Publications

Detailed Information

Climate change, phenology, and phenological control of vegetation feedbacks to the climate system

Cited 1415 time in Web of Science Cited 1529 time in Scopus
Authors

Richardson, Andrew D.; Keenan, Trevor F.; Migliavacca, Mirco; Ryu, Youngryel; Sonnentag, Oliver; Toomey, Michael

Issue Date
2013-02
Publisher
Elsevier BV
Citation
Agricultural and Forest Meteorology, Vol.169, pp.156-173
Abstract
Vegetation phenology is highly sensitive to climate change. Phenology also controls many feedbacks of vegetation to the climate system by influencing the seasonality of albedo, surface roughness length, canopy conductance, and fluxes of water, energy, CO2 and biogenic volatile organic compounds. In this review, we first discuss the environmental drivers of phenology, and the impacts of climate change on phenology, in different biomes. We then examine the vegetation-climate feedbacks that are mediated by phenology, and assess the potential impact on these feedbacks of shifts in phenology driven by climate change. We finish with an overview of phenological modeling and we suggest ways in which models might be improved using existing data sets. Several key weaknesses in our current understanding emerge from this analysis. First, we need a better understanding of the drivers of phenology, particularly in under-studied biomes (e.g. tropical forests). We do not have a mechanistic understanding of the role of photoperiod, even in well-studied biomes. In all biomes, the factors controlling senescence and dormancy are not well-documented. Second, for the most part (i.e. with the exception of phenology impacts on CO2 exchange) we have only a qualitative understanding of the feedbacks between vegetation and climate that are mediated by phenology. We need to quantify the magnitude of these feedbacks, and ensure that they are accurately reproduced by models. Third, we need to work towards a new understanding of phenological processes that enables progress beyond the modeling paradigms currently in use. Accurate representation of phenological processes in models that couple the land surface to the climate system is particularly important, especially when such models are being used to predict future climate. (C) 2012 Elsevier B.V. All rights reserved.
ISSN
0168-1923
URI
https://hdl.handle.net/10371/199211
DOI
https://doi.org/10.1016/j.agrformet.2012.09.012
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Agriculture and Life Sciences
  • Department of Landscape Architecture and Rural System Engineering
Research Area

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share