Publications

Detailed Information

Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery

Cited 52 time in Web of Science Cited 59 time in Scopus
Authors

Lee, Jae-Young; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

Issue Date
2015-08
Publisher
Elsevier BV
Citation
European Journal of Pharmaceutics and Biopharmaceutics, Vol.94, pp.532-541
Abstract
Chondroitin sulfate A-deoxycholic acid (CSA-DOCA)-based nanoparticles (NPs) were produced for tumor-targeted delivery of doxorubicin (DOX). The hydrophobic deoxycholic acid (DOCA) derivative was conjugated to the hydrophilic chondroitin sulfate A (CSA) backbone via amide bond formation, and the structure was confirmed by H-1-nuclear magnetic resonance (NMR) analysis. Loading the DOX to the CSA-DOCA NPs resulted in NPs with an approximately 230 nm mean diameter, narrow size distribution, negative zeta potential, and relatively high drug encapsulation efficiency (up to 85%). The release of DOX from the NPs exhibited sustained and pH-dependent release profiles. The cellular uptake of DOX from the CSA-DOCA NPs in CD44 receptor-positive human breast adenocarcinoma MDA-MB-231 cells was reduced when co-treated with free CSA, indicating the interaction between CSA and the CD44 receptor. The lower IC50 value of DOX from the CSA-DOCA NPs compared to the DOX solution was also probably due to this interaction. Moreover, the ability of the developed NPs to target tumors could be inferred from the in vivo and ex vivo near-infrared fluorescence (NIRF) imaging results in the MDA-MB-231 tumor-xenografted mouse model. Both passive and active strategies appear to have contributed to the in vivo tumor targetability of the CSA-DOCA NPs. Therefore, these CSA-DOCA NPs could further be developed into a theranostic nanoplatform for CD44 receptor-positive cancers. (C) 2015 Elsevier B.V. All rights reserved.
ISSN
0939-6411
URI
https://hdl.handle.net/10371/199521
DOI
https://doi.org/10.1016/j.ejpb.2015.06.011
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Pharmacy
  • Department of Pharmacy
Research Area Biomaterial-based nano-platforms for cancer drug delivery and imaging, Formulation design and development, Functional protein expression and evaluation for drug delivery and therapy applications

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share