Detailed Information

Contrasting Trends in Convective and Large-Scale Precipitation in the Intertropical Convergence Zone From Reanalysis Data Sets

Cited 0 time in Web of Science Cited 0 time in Scopus

Jeon, Joon-Gu; Yeh, Sang-Wook; Song, Se-Yong; Kirtman, Ben P.; Kim, Daehyun

Issue Date
American Geophysical Union
Journal of geophysical research - Atmospheres, Vol.128 No.14, p. e2022JD037973
We investigated long-term trends in convective and large-scale precipitation within the Intertropical Convergence Zone during the boreal summer (June–August) for the period 1980–2020 using five different reanalysis datasets. We found that there exists a large diversity in the trends. In particular, we focused on the European Center for Medium-Range Weather Forecasts reanalysis version 5 (ERA5) and the Japanese 55-year reanalysis (JRA55) datasets; because the convective precipitation amount statistically significantly decreases in the former, but increases in the later. In contrast, the large-scale precipitation amount increases in both of these reanalysis datasets. We examine the physical factors leading to contrasting features in the respective trends in convective and large-scale precipitation amount between two reanalysis datasets. A significant decrease of convective available potential energy, which is caused by enhanced atmospheric stability, leads to a decreasing trend of convective precipitation amount in the ERA5 dataset. In contrast, a significant increase of precipitable water is noted in JRA55 dataset. Additionally, the Clausius–Clapeyron relation is larger in JRA55 than ERA5, implying that the sensitivity of humidity to the temperature change is larger in JRA55 than that in ERA5 dataset. On the other hand, the increase of the large-scale precipitation is associated with the increase of medium cloud amount in both ERA5 and JRA55 datasets.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.