Publications

Detailed Information

Seasonal Locking of the MJO's Southward Detour of the Maritime Continent: The Role of the Australian Monsoon

Cited 4 time in Web of Science Cited 5 time in Scopus
Authors

Kang, Daehyun; Kim, Daehyun; Rushley, Stephanie; Maloney, Eric

Issue Date
2022-12
Publisher
American Meteorological Society
Citation
Journal of Climate, Vol.35 No.24, pp.4553-4568
Abstract
This study investigates why the major convective envelope of the Madden-Julian oscillation (MJO) detours to the south of the Maritime Continent (MC) only during boreal winter [December-March (DJFM)]. To examine processes affecting this MJO detour, the MJO-related variance of precipitation and column-integrated moisture anomalies in DJFM are compared with those in the seasons before [October-November (ON)] and after [April-May (AM)]. While MJO precipitation variance is much higher in the southern MC (SMC) during DJFM than in other seasons, the MJO moisture variance is comparable among the seasons, implying that the seasonal locking of the MJO's southward detour cannot be explained by the magnitude of moisture anomalies alone. The higher precipitation variance in the SMC region is partly explained by the much higher moisture sensitivity of precipitation in DJFM than in other seasons, resulting in a more efficient conversion of anomalous moisture to anomalous precipitation. DJFM is also distinguishable from the other seasons by stronger positive wind-evaporation feedback onto MJO precipitation anomalies due to the background westerly wind in the lower troposphere. It is found that the seasonal cycle of moisture-precipitation coupling and wind-evaporation feedback in the SMC region closely follows that of the Australian monsoon, which is active exclusively in DJFM. Our results suggest that the MJO's southward detour in the MC is seasonally locked because it occurs preferentially when the Australian monsoon system produces a background state that is favorable for MJO development in the SMC.
ISSN
0894-8755
URI
https://hdl.handle.net/10371/200937
DOI
https://doi.org/10.1175/JCLI-D-22-0234.1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share