Detailed Information

Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products

Cited 22 time in Web of Science Cited 23 time in Scopus

Ren, Pengfei; Kim, Daehyun; Ahn, Min-Seop; Kang, Daehyun; Ren, Hong-Li

Issue Date
American Meteorological Society
Journal of Climate, Vol.34 No.8, pp.2977-3001
This study conducts an intercomparison of the column-integrated moist static energy (MSE) and water vapor budget of the Madden-Julian oscillation (MJO) among six modern global reanalysis products (RAs). Inter-RA differences in the mean MSE, MJO MSE anomalies, individual MSE budget terms, and their relative contributions to the propagation and maintenance of MJO MSE anomalies are examined. Also investigated is the relationship between the MJO column water vapor (CWV) budget residuals with the other CWV budget terms as well as with the two parameters that characterize cloud-radiation feedback and moisture-convection coupling. Results show a noticeable inter-RA spread in the mean-state MSE, especially its vertical structure. In all RAs, horizontal MSE advection dominates the propagation of the MJO MSE while column-integrated longwave radiative heating and vertical MSE advection are found to be the key processes for MJO maintenance. The MSE budget terms directly affected by the model parameterization schemes exhibit high uncertainty. The differences in anomalous vertical velocity mainly contribute to the large differences in vertical MSE advection among the RAs. The budget residuals show large inter-RA differences and have nonnegligible contributions to MJO maintenance and propagation in most RAs. RAs that underestimate (overestimate) the strength of cloud-radiation feedback and the convective moisture adjustment time scale tend to have positive (negative) MJO CWV budget residual, indicating the critical role of these processes in the maintenance of MJO CWV anomalies. Our results emphasize that a correct representation of the interactions among moisture, convection, cloud, and radiation is the key for an accurate depiction of the MJO MSE and CWV budget in RAs.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.