Publications

Detailed Information

Timescale-dependent AMOC-AMO relationship in an earth system model of intermediate complexity : Timescale-dependent AMOC–AMO relationship in an earth system model of intermediate complexity

DC Field Value Language
dc.contributor.authorKim, Hyo-Jeong-
dc.contributor.authorAn, Soon-Il-
dc.contributor.authorKim, Daehyun-
dc.date.accessioned2024-05-07T01:31:09Z-
dc.date.available2024-05-07T01:31:09Z-
dc.date.created2024-04-22-
dc.date.created2024-04-22-
dc.date.issued2021-01-
dc.identifier.citationInternational Journal of Climatology, Vol.41 No.S1, pp.E3298-E3306-
dc.identifier.issn0899-8418-
dc.identifier.urihttps://hdl.handle.net/10371/200948-
dc.description.abstractThe relationship between Atlantic multi-decadal oscillation (AMO) and Atlantic meridional overturning circulation (AMOC) is examined with respect to two (inter- and multi-decadal) different timescales using a long-term unforced simulation of an earth system model of intermediate complexity. In the inter-decadal timescale, the AMO and the AMOC establish a self-sustaining oscillatory mode; the AMOC induces the positive AMO through meridional heat transport (MHT), but with the time delay of approximately 7 years as the AMOC anomalies propagate southward over time within the Atlantic basin. After then, the AMO reduces the density in the main sinking region and brings the negative phase of the AMOC, which results in the rest half of the cycle. On the other hand, in the multi-decadal timescale, the AMO and the AMOC are almost in phase because the AMOC is spatially stationary, resulting in a pan-Atlantic surface warming. In addition, the Arctic-originated density fluctuations are required for the multi-decadal AMOC to switch its phase. The results obtained in this study suggest that timescale dependency should be considered when investigating the AMOC–AMO relationship.-
dc.language영어-
dc.publisherJohn Wiley and Sons Ltd-
dc.titleTimescale-dependent AMOC-AMO relationship in an earth system model of intermediate complexity-
dc.title.alternativeTimescale-dependent AMOC–AMO relationship in an earth system model of intermediate complexity-
dc.typeArticle-
dc.identifier.doi10.1002/joc.6926-
dc.citation.journaltitleInternational Journal of Climatology-
dc.identifier.wosid000589583900001-
dc.identifier.scopusid2-s2.0-85096650705-
dc.citation.endpageE3306-
dc.citation.numberS1-
dc.citation.startpageE3298-
dc.citation.volume41-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKim, Daehyun-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMERIDIONAL OVERTURNING CIRCULATION-
dc.subject.keywordPlusATLANTIC MULTIDECADAL OSCILLATION-
dc.subject.keywordPlusSEA-SURFACE TEMPERATURE-
dc.subject.keywordPlusGREAT SALINITY ANOMALIES-
dc.subject.keywordPlusTHERMOHALINE CIRCULATION-
dc.subject.keywordPlusINTERDECADAL VARIABILITY-
dc.subject.keywordPlusCLIMATE VARIABILITY-
dc.subject.keywordPlusOCEAN CIRCULATION-
dc.subject.keywordPlusFLUX-
dc.subject.keywordPlusPREDICTABILITY-
dc.subject.keywordAuthorAtlantic meridional overturning circulation-
dc.subject.keywordAuthorAtlantic multi-decadal oscillation-
dc.subject.keywordAuthormultiple timescales-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share