Publications

Detailed Information

Mechanisms of Convective Clustering During a 2-Day Rain Event in AMIE/DYNAMO

Cited 5 time in Web of Science Cited 5 time in Scopus
Authors

Cheng, Wei-Yi; Kim, Daehyun; Rowe, Angela; Moon, Yumin; Wang, Shuguang

Issue Date
2020-03
Publisher
American Geophysical Union
Citation
Journal of Advances in Modeling Earth Systems, Vol.12 No.3
Abstract
Physical mechanisms that are key to observed convective clustering in 2-day rain events are examined. Previous analysis of the 2-day rain events during the Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment (AMIE)/Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign data revealed two distinct phases of convective clustering. Using a cloud-system-resolving model, we perform a series of intervention experiments to investigate the underlying mechanisms for convective clustering in each phase. In the developing phase, in addition to previously emphasized processes such as the cold pool-updraft interaction and moisture-convection feedbacks, our results show that the vertical wind shear in the lower free troposphere is a critical factor for convective clustering. Stronger lower free-tropospheric wind shear increases the entrainment of environmental air into updrafts and prevents convective clouds from being omnipresent. This result suggests that stronger vertical wind shear in the lower free troposphere can help spatially organize the convection, even for non–squall-line-type convective systems. In the decaying phase, the cold pool-updraft interaction becomes less effective in aggregating convective clouds because the boundary layer is widely cooled by stratiform precipitation. Instead, the mesoscale downdraft driven by the stratiform precipitation becomes the dominant factor to maintain the relatively aggregated convection. Additionally, removing horizontal variations in radiative heating has no impact on convective clustering on this 2-day time scale, even in the decaying phase when stratiform clouds are widespread. The implication of these results for improving the representation of mesoscale convective organization in convection schemes is discussed.
ISSN
1942-2466
URI
https://hdl.handle.net/10371/200962
DOI
https://doi.org/10.1029/2019MS001907
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share