Publications

Detailed Information

WISHE-Moisture Mode in an Aquaplanet Simulation

DC Field Value Language
dc.contributor.authorShi, Xiaoming-
dc.contributor.authorKim, Daehyun-
dc.contributor.authorAdames, Ángel F.-
dc.contributor.authorSukhatme, Jai-
dc.date.accessioned2024-05-07T01:32:34Z-
dc.date.available2024-05-07T01:32:34Z-
dc.date.created2024-04-22-
dc.date.created2024-04-22-
dc.date.issued2018-10-
dc.identifier.citationJournal of Advances in Modeling Earth Systems, Vol.10 No.10, pp.2393-2407-
dc.identifier.issn1942-2466-
dc.identifier.urihttps://hdl.handle.net/10371/200974-
dc.description.abstractThis study aims to understand the nature of the tropical intraseasonal oscillations (ISOs) in an aquaplanet simulation performed using Geophysical Fluid Dynamics Laboratory's AM2.1 with a uniform sea surface temperature within the deep tropics. The simulated ISO resembles the observed Madden-Julian Oscillation in that the spectral peak in precipitation appears at zonal wave number 1 and a period of ~60 days. Vertically integrated moist static energy budget of the simulated ISO shows that enhanced latent heat flux to the east of anomalously active convection causes eastward propagation of the ISO mode, which is weakly opposed by horizontal moisture advection. A series of mechanism denial experiments are conducted either by homogenizing select variables—surface wind stress, longwave radiative heating, and surface evaporation—with their zonal means from the control simulation or by suppressing free-tropospheric moisture variation. Results of the mechanism denial experiments show that the simulated ISO disappears when the interactive surface evaporation is disabled, suggesting that the wind-induced surface heat exchange (WISHE) mechanism is essential to the simulated ISO. Longwave cloud-radiation feedbacks and moisture-convection feedbacks affect horizontal scale and phase speed of the simulated ISO, respectively. Our results strongly suggest that the simulated ISO is the linear WISHE-moisture mode of Fuchs and Raymond under horizontally uniform boundary conditions.-
dc.language영어-
dc.publisherAmerican Geophysical Union-
dc.titleWISHE-Moisture Mode in an Aquaplanet Simulation-
dc.typeArticle-
dc.identifier.doi10.1029/2018MS001441-
dc.citation.journaltitleJournal of Advances in Modeling Earth Systems-
dc.identifier.wosid000450413200002-
dc.identifier.scopusid2-s2.0-85054871425-
dc.citation.endpage2407-
dc.citation.number10-
dc.citation.startpage2393-
dc.citation.volume10-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKim, Daehyun-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMADDEN-JULIAN OSCILLATION-
dc.subject.keywordPlusTROPICAL INTRASEASONAL OSCILLATION-
dc.subject.keywordPlusLARGE-SCALE MODELS-
dc.subject.keywordPlusZONALLY SYMMETRIC AQUAPLANET-
dc.subject.keywordPlusGENERAL-CIRCULATION MODEL-
dc.subject.keywordPlusEASTWARD PROPAGATION-
dc.subject.keywordPlusSTRATIFORM CLOUDS-
dc.subject.keywordPlusSURFACE FLUXES-
dc.subject.keywordPlusWATER-VAPOR-
dc.subject.keywordPlusMJO-
dc.subject.keywordAuthoraquaplanet simulation-
dc.subject.keywordAuthortropical intraseasonal oscillation-
dc.subject.keywordAuthorWISHE-moisture mode-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share