Publications

Detailed Information

The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves

Cited 104 time in Web of Science Cited 105 time in Scopus
Authors

Lin, Jia-Lin; Lee, Myong-In; Kim, Daehyun; Kang, In-Sik; Frierson, Dargan M. W.

Issue Date
2008-03
Publisher
American Meteorological Society
Citation
Journal of Climate, Vol.21 No.5, pp.883-909
Abstract
This study examines the impacts of convective parameterization and moisture convective trigger on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). Three different convection schemes are used, including the simplified Arakawa-Schubert (SAS) scheme, the Kuo (1974) scheme, and the moist convective adjustment (MCA) scheme, and a moisture convective trigger with variable strength is added to each scheme. The authors also conduct a "no convection" experiment with deep convection schemes turned off. Space-time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the Madden-Julian oscillation (MJO), Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves. The results show that both convective parameterization and the moisture convective trigger have significant impacts on AGCM-simulated, convectively coupled equatorial waves. The MCA scheme generally produces larger variances of convectively coupled equatorial waves including the MJO, more coherent eastward propagation of the MJO, and a more prominent MJO spectral peak than the Kuo and SAS schemes. Increasing the strength of the moisture trigger significantly enhances the variances and slows down the phase speeds of all wave modes except the MJO, and usually improves the eastward propagation of the MJO for the Kuo and SAS schemes, but the effect for the MCA scheme is small. The no convection experiment always produces one of the best signals of convectively coupled equatorial waves and the MJO.
ISSN
0894-8755
URI
https://hdl.handle.net/10371/201033
DOI
https://doi.org/10.1175/2007JCLI1790.1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Earth & Environmental Data, Severe Weather, 기후과학, 위험기상, 지구환경 데이터과학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share