Publications

Detailed Information

Dislocation interactions at the grain boundary in FCC bicrystals: An atomistically-informed dislocation dynamics study

Cited 24 time in Web of Science Cited 27 time in Scopus
Authors

Aragon, Nicole K.; Gravell, Jamie D.; Ryu, Ill

Issue Date
2022-01
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
ACTA MATERIALIA, Vol.223
Abstract
To understand the underlying mechanisms that control the mechanical properties of nanostructured metals, an insight into the role of the grain boundary in dislocation-driven plastic deformation is vital. The grain boundary has been observed as a dislocation source, sink, or having no effect, which in turn, gives rise to different macroscopic mechanical responses. With this motivation, atomistic simulations and three-dimensional dislocation dynamics simulations were performed to investigate dislocation interactions at various grain boundaries and their role in the plastic deformation of face-centered cubic (FCC) bicrystalline micropillars. The atomistically-informed dislocation dynamics simulations show that bicrystalline samples containing a high angle grain boundary (HAGB) display hardening and higher flow stresses compared to single crystals, while micropillars with a coherent twin boundary (CTB) show similar flow stresses to the reference single crystalline samples. This is due to the transparency of the grain boundary to slip transmission, which is observed in the atomistic simulations. Interestingly, allowing dislocation glide on the grain boundary exhibits a decrease in flow stress as slip transmission becomes easier. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
ISSN
1359-6454
URI
https://hdl.handle.net/10371/201256
DOI
https://doi.org/10.1016/j.actamat.2021.117455
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

Ryu, Ill Image

Ryu, Ill류일
조교수
  • College of Engineering
  • Department of Materials Science & Engineering
Research Area Fundamental deformation mechanisms, Optimal desing in nanostructures, Reliability Analysis in Nanostructures

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share