Publications

Detailed Information

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life

Cited 1277 time in Web of Science Cited 1311 time in Scopus
Authors

Yao, Yan; McDowell, Matthew T.; Ryu, Ill; Wu, Hui; Liu, Nian; Hu, Liangbing; Nix, William D.; Cui, Yi

Issue Date
2011-07
Publisher
AMER CHEMICAL SOC
Citation
NANO LETTERS, Vol.11 No.7, pp.2949-2954
Abstract
Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g(-1) with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.
ISSN
1530-6984
URI
https://hdl.handle.net/10371/201275
DOI
https://doi.org/10.1021/nl201470j
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

Ryu, Ill Image

Ryu, Ill류일
조교수
  • College of Engineering
  • Department of Materials Science & Engineering
Research Area Fundamental deformation mechanisms, Optimal desing in nanostructures, Reliability Analysis in Nanostructures

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share