Detailed Information

Substructure-based neural machine translation for retrosynthetic prediction

Cited 14 time in Web of Science Cited 14 time in Scopus

Ucak, Umit V.; Kang, Taek; Ko, Jun Su; Lee, Ju Yong

Issue Date
Journal of Cheminformatics, Vol.13 No.1, p. 4
With the rapid improvement of machine translation approaches, neural machine translation has started to play an important role in retrosynthesis planning, which finds reasonable synthetic pathways for a target molecule. Previous studies showed that utilizing the sequence-to-sequence frameworks of neural machine translation is a promising approach to tackle the retrosynthetic planning problem. In this work, we recast the retrosynthetic planning problem as a language translation problem using a template-free sequence-to-sequence model. The model is trained in an end-to-end and a fully data-driven fashion. Unlike previous models translating the SMILES strings of reactants and products, we introduced a new way of representing a chemical reaction based on molecular fragments. It is demonstrated that the new approach yields better prediction results than current state-of-the-art computational methods. The new approach resolves the major drawbacks of existing retrosynthetic methods such as generating invalid SMILES strings. Specifically, our approach predicts highly similar reactant molecules with an accuracy of 57.7%. In addition, our method yields more robust predictions than existing methods.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Dept. of Molecular and Biopharmaceutical Sciences
Research Area AI models for drug discovery, Free energy calculation, Molecular dynamics, 분자동역학, 신약개발을 위한 AI 모델, 자유에너지 계산


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.