Publications

Detailed Information

Computational scheme for pH-dependent binding free energy calculation with explicit solvent

DC Field Value Language
dc.contributor.authorLee, Ju Yong-
dc.contributor.authorMiller, Benjamin T.-
dc.contributor.authorBrooks, Bernard R.-
dc.date.accessioned2024-05-13T05:01:10Z-
dc.date.available2024-05-13T05:01:10Z-
dc.date.created2024-05-13-
dc.date.issued2016-01-
dc.identifier.citationProtein Science, Vol.25 No.1, pp.231-243-
dc.identifier.issn0961-8368-
dc.identifier.urihttps://hdl.handle.net/10371/201532-
dc.description.abstractWe present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pK(a) shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1). We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations.-
dc.language영어-
dc.publisherCold Spring Harbor Laboratory Press-
dc.titleComputational scheme for pH-dependent binding free energy calculation with explicit solvent-
dc.typeArticle-
dc.identifier.doi10.1002/pro.2755-
dc.citation.journaltitleProtein Science-
dc.identifier.wosid000369820800022-
dc.identifier.scopusid2-s2.0-84959188154-
dc.citation.endpage243-
dc.citation.number1-
dc.citation.startpage231-
dc.citation.volume25-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorLee, Ju Yong-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusBENNETTS ACCEPTANCE RATIO-
dc.subject.keywordPlusREPLICA-EXCHANGE METHOD-
dc.subject.keywordPlusISOTROPIC PERIODIC SUM-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusCONSTANT-PH-
dc.subject.keywordPlusCUCURBITURIL HOMOLOGS-
dc.subject.keywordPlusPK(A) VALUES-
dc.subject.keywordPlusSIMULATIONS-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusIMPLICIT-
dc.subject.keywordAuthorconstant-pH simulation-
dc.subject.keywordAuthorabsolute binding free energy calculation-
dc.subject.keywordAuthorbinding affinity-
dc.subject.keywordAuthorpH-dependence-
dc.subject.keywordAuthorBennett acceptance ratio-
dc.subject.keywordAuthorEDS-HREM-
dc.subject.keywordAuthorhost-guest system-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Dept. of Molecular and Biopharmaceutical Sciences
Research Area AI models for drug discovery, Free energy calculation, Molecular dynamics, 분자동역학, 신약개발을 위한 AI 모델, 자유에너지 계산

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share