Detailed Information

Enhancing Constant-pH Simulation in Explicit Solvent with a Two-Dimensional Replica Exchange Method

Cited 31 time in Web of Science Cited 33 time in Scopus

Lee, Ju Yong; Miller, Benjamin T.; Damjanovic, Ana; Brooks, Bernard R.

Issue Date
American Chemical Society
Journal of Chemical Theory and Computation, Vol.11 No.6, pp.2560-2574
We present a new method for enhanced sampling for constant-pH simulations in explicit water based on a two-dimensional (2D) replica exchange scheme. The new method is a significant extension of our previously developed constant-pH simulation method, which is based on enveloping distribution sampling (EDS) coupled with a one-dimensional (1D) Hamiltonian exchange method (HREM). EDS constructs a hybrid Hamiltonian from multiple discrete end state Hamiltonians that, in this case, represent different protonation states of the system. The ruggedness and heights of the hybrid Hamiltonian's energy barriers can be tuned by the smoothness parameter. Within the context of the ID EDS-HREM method, exchanges are performed between replicas with different smoothness parameters, allowing frequent protonation-state transitions and sampling of conformations that are favored by the end-state Hamiltonians. In this work, the 1D method is extended to 2D with an additional dimension, external pH. Within the context of the 2D method (2D EDS-HREM), exchanges are performed on a lattice of Hamiltonians with different pH conditions and smoothness parameters. We demonstrate that both the 1D and 2D methods exactly reproduce the thermodynamic properties of the semigrand canonical (SGC) ensemble of a system at a given pH. We have tested our new 2D method on aspartic acid, glutamic acid, lysine, a four residue peptide (sequence KAAE), and snake cardiotoxin. In all cases, the 2D method converges faster and without loss of precision; the only limitation is a loss of flexibility in how CPU time is employed. The results for snake cardiotoxin demonstrate that the 2D method enhances protonation-state transitions, samples a wider conformational space with the same amount of computational resources, and converges significantly faster overall than the original 1D method.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Dept. of Molecular and Biopharmaceutical Sciences
Research Area AI models for drug discovery, Free energy calculation, Molecular dynamics, 분자동역학, 신약개발을 위한 AI 모델, 자유에너지 계산


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.