Publications

Detailed Information

Lifted representation of relational causal models revisited: Implications for reasoning and structure learning

Cited 0 time in Web of Science Cited 2 time in Scopus
Authors

Lee, Sanghack; Honavar, Vasant

Issue Date
2015
Publisher
CEUR-WS
Citation
CEUR Workshop Proceedings, Vol.1504, pp.56-65
Abstract
Maier et al. (2010) introduced the relational causal model (RCM) for representing and inferring causal relationships in relational data. A lifted representation, called abstract ground graph (AGG), plays a central role in reasoning with and learning of RCM. The correctness of the algorithm proposed by Maier et al. (2013a) for learning RCM from data relies on the soundness and completeness of AGG for relational dseparation to reduce the learning of an RCM to learning of an AGG. We revisit the definition of AGG and show that AGG, as defined in Maier et al. (2013b), does not correctly abstract all ground graphs. We revise the definition of AGG to ensure that it correctly abstracts all ground graphs. We further show that AGG representation is not complete for relational d-separation, that is, there can exist conditional independence relations in an RCM that are not entailed by AGG. A careful examination of the relationship between the lack of completeness of AGG for relational d-separation and faithfulness conditions suggests that weaker notions of completeness, namely adjacency faithfulness and orientation faithfulness between an RCM and its AGG, can be used to learn an RCM from data.
ISSN
1613-0073
URI
https://hdl.handle.net/10371/201568
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Data Science
Research Area Causal Decision Making, Causal Discovery, Causal Inference

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share