Publications

Detailed Information

Biotemplated Nanocomposites of Transition-Metal Oxides/Carbon Nanotubes with Highly Stable and Efficient Electrochemical Interfaces for High-Power Lithium-Ion Batteries

DC Field Value Language
dc.contributor.authorKim, Soonwoo-
dc.contributor.authorLim, Yein-
dc.contributor.authorKang, Tae-Hyung-
dc.contributor.authorMoon, Jihee-
dc.contributor.authorChoi, In-Suk-
dc.contributor.authorLee, Yun Jung-
dc.contributor.authorYi, Hyunjung-
dc.date.accessioned2024-05-14T07:06:14Z-
dc.date.available2024-05-14T07:06:14Z-
dc.date.created2020-09-25-
dc.date.issued2020-08-
dc.identifier.citationACS Applied Energy Materials, Vol.3 No.8, pp.7804-7812-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://hdl.handle.net/10371/201939-
dc.description.abstractKinetic stability of transition-metal oxide (TMO) anodes is of significant importance for high-power lithium-ion batteries (LIBs). Stable interfaces between TMOs and electrical nanomaterials could enhance high-power performance. In this study, we report a biotemplate-based approach for securing structural and electrochemical interfaces between active materials and conductive nanomaterials and demonstrate highly stable and high-power Co(3)O(4 )anodes for LIBs. Co3O4 nanoflower electrodes are synthesized on an M13 phage-templated conductive nanonetwork of single-walled carbon nanotubes (SWCNTs). Co3O4 nanoflowers on the bionanonetwork, Co3O4/SWCNT-M13, exhibit significantly improved cycling performance at a high rate and rate capabilities. The synergistic effect of the conductive cores, nanoflower morphologies, and secured interfaces between the Co3O4 and SWCNT of Co3O4/SWCNT-M13 enables an excellent specific capacity of 1283.5 mA h g(-1) at a high rate of 2 A g(-1) after 500 cycles. Our strategy could provide a versatile and powerful platform for structuring highly stable and high-power TMO anodes and thus would benefit other oxide materials that suffer from poor kinetic performance and mechanical instability.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleBiotemplated Nanocomposites of Transition-Metal Oxides/Carbon Nanotubes with Highly Stable and Efficient Electrochemical Interfaces for High-Power Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.0c01208-
dc.citation.journaltitleACS Applied Energy Materials-
dc.identifier.wosid000563784400060-
dc.identifier.scopusid2-s2.0-85091075395-
dc.citation.endpage7812-
dc.citation.number8-
dc.citation.startpage7804-
dc.citation.volume3-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, In-Suk-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusREVERSIBLE CAPACITY-
dc.subject.keywordPlusCO3O4 NANOPARTICLES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusANODE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordAuthornanocomposites-
dc.subject.keywordAuthorbiotemplates-
dc.subject.keywordAuthortransition-metal oxides-
dc.subject.keywordAuthorcarbon nanotubes-
dc.subject.keywordAuthorlithium-ion batteries-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area High Temperature Alloys, High Strength , Nano Mechanics and Nano Structure Design for Ultra Strong Materials, Shape and Pattern Design for Engineering Materials

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share