Publications

Detailed Information

Orientation-dependent indentation response of magnesium single crystals: Modeling and experiments

DC Field Value Language
dc.contributor.authorSelvarajou, Balaji-
dc.contributor.authorShin, Joong-Ho-
dc.contributor.authorHa, Tae Kwon-
dc.contributor.authorChoi, In Suk-
dc.contributor.authorJoshi, Shailendra P.-
dc.contributor.authorHan, Heung Nam-
dc.date.accessioned2024-05-14T07:08:01Z-
dc.date.available2024-05-14T07:08:01Z-
dc.date.created2021-04-21-
dc.date.issued2014-12-
dc.identifier.citationActa Materialia, Vol.81, pp.358-376-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://hdl.handle.net/10371/201971-
dc.description.abstractWe investigate the orientation-dependent characteristics of magnesium single crystals under localized contact using nanoindentation experiments and crystal plasticity finite element (CPFE) simulations. Nanoindentation experiments on (0 0 0 1) and (1 1 (2) over bar 0) planes exhibited distinct load depth responses. Atomic force microscopy revealed material pile-up with sixfold symmetry in the former case and a sink-in phenomenon with twofold symmetry in the latter case. Our corresponding detailed CPFE simulations uncover the evolution of deformation activity in the indented volume, thereby providing insight into the interacting effects that cause the pile-up and sink-in phenomena. The simulations indicate the occurrence of {1 0 (1) over bar 2} extension twins in both cases, although their spatial locations are different. These observations strongly corroborate with our transmission electron microscopic analysis of the indented samples. Finally, our simulations also indicate that, depending upon the crystal orientation, elastic recovery upon unloading may play important role in final surface morphology around the indented region. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleOrientation-dependent indentation response of magnesium single crystals: Modeling and experiments-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2014.08.042-
dc.citation.journaltitleActa Materialia-
dc.identifier.wosid000345179800035-
dc.identifier.scopusid2-s2.0-84907199893-
dc.citation.endpage376-
dc.citation.startpage358-
dc.citation.volume81-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, In Suk-
dc.contributor.affiliatedAuthorHan, Heung Nam-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusPLASTICALLY GRADED MATERIALS-
dc.subject.keywordPlusFINITE-ELEMENT SIMULATIONS-
dc.subject.keywordPlusPYRAMIDAL INDENTATION-
dc.subject.keywordPlusSPHERICAL INDENTATION-
dc.subject.keywordPlusSURFACE DEFORMATION-
dc.subject.keywordPlusHEXAGONAL METALS-
dc.subject.keywordPlusELASTIC-MODULUS-
dc.subject.keywordPlusGRAIN-SIZE-
dc.subject.keywordPlusPILE-UP-
dc.subject.keywordPlusNANOINDENTATION-
dc.subject.keywordAuthorNanoindentation-
dc.subject.keywordAuthorElasto-plastic contact-
dc.subject.keywordAuthorMagnesium-
dc.subject.keywordAuthorCrystal plasticity-
dc.subject.keywordAuthorPile-up-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area High Temperature Alloys, High Strength , Nano Mechanics and Nano Structure Design for Ultra Strong Materials, Shape and Pattern Design for Engineering Materials

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share