Publications

Detailed Information

Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates

DC Field Value Language
dc.contributor.authorKim, Byoung-Joon-
dc.contributor.authorShin, Hae-A-Seul-
dc.contributor.authorLee, Ji-Hoon-
dc.contributor.authorYang, Tae-Youl-
dc.contributor.authorHaas, Thomas-
dc.contributor.authorGruber, Patric-
dc.contributor.authorChoi, In Suk-
dc.contributor.authorKraft, Oliver-
dc.contributor.authorJoo, Young-Chang-
dc.date.accessioned2024-05-14T07:08:04Z-
dc.date.available2024-05-14T07:08:04Z-
dc.date.created2021-03-31-
dc.date.issued2014-12-
dc.identifier.citationJournal of Materials Research, Vol.29 No.23, pp.2827-2834-
dc.identifier.issn0884-2914-
dc.identifier.urihttps://hdl.handle.net/10371/201972-
dc.description.abstractThe thickness dependence of the electrical stability under monotonic and cyclic tensile loading is investigated for Cu films on polymer substrates. As for monotonic tensile deformation, thicker films show better stability than thinner films due to their higher ductility and the larger capability of strain accommodation. For the fatigue resistance, however, a more complex behavior was observed depending on the amount of the applied strain. For low strain amplitude in the high cycle fatigue (HCF) regime, thinner films exhibit longer fatigue life because the larger strength of thinner films suppresses dislocation movement and damage nucleation. However, for high strain amplitudes in the low cycle fatigue (LCF) regime, the fatigue life for thinner films is drastically reduced compared to thicker films. It is shown that fatigue coefficients in the LCF regime can be obtained when applying the Coffin-Manson relationship.-
dc.language영어-
dc.publisherMaterials Research Society-
dc.titleEffect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates-
dc.typeArticle-
dc.identifier.doi10.1557/jmr.2014.339-
dc.citation.journaltitleJournal of Materials Research-
dc.identifier.wosid000346431100007-
dc.identifier.scopusid2-s2.0-84926034390-
dc.citation.endpage2834-
dc.citation.number23-
dc.citation.startpage2827-
dc.citation.volume29-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, In Suk-
dc.contributor.affiliatedAuthorJoo, Young-Chang-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusCRACK NUCLEATION-
dc.subject.keywordPlusYIELD STRENGTH-
dc.subject.keywordPlusLENGTH-SCALE-
dc.subject.keywordPlusTHIN-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusMULTILAYER-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordAuthorFatigue-
dc.subject.keywordAuthorFilm-
dc.subject.keywordAuthorFracture-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area High Temperature Alloys, High Strength , Nano Mechanics and Nano Structure Design for Ultra Strong Materials, Shape and Pattern Design for Engineering Materials

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share