Publications

Detailed Information

Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics

DC Field Value Language
dc.contributor.authorWie, Dae Seung-
dc.contributor.authorZhang, Yue-
dc.contributor.authorKim, Min Ku-
dc.contributor.authorKim, Bongjoong-
dc.contributor.authorPark, Sangwook-
dc.contributor.authorKim, Young-Joon-
dc.contributor.authorIrazoqui, Pedro P.-
dc.contributor.authorZheng, Xiaolin-
dc.contributor.authorXu, Baoxing-
dc.contributor.authorLee, Chi Hwan-
dc.date.accessioned2024-05-14T08:21:36Z-
dc.date.available2024-05-14T08:21:36Z-
dc.date.created2023-05-26-
dc.date.issued2018-07-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America, Vol.115 No.31, pp.E7236-E7244-
dc.identifier.issn0027-8424-
dc.identifier.urihttps://hdl.handle.net/10371/202174-
dc.description.abstractTransfer printing of thin-film nanoelectronics from their fabrication wafer commonly requires chemical etching on the sacrifice of wafer but is also limited by defects with a low yield. Here, we introduce a wafer-recyclable, environment-friendly transfer printing process that enables the wafer-scale separation of high-performance thin-film nanoelectronics from their fabrication wafer in a defect-free manner that enables multiple reuses of the wafer. The interfacial delamination is enabled through a controllable cracking phenomenon in a water environment at room temperature. The physically liberated thin-film nanoelectronics can be then pasted onto arbitrary places of interest, thereby endowing the particular surface with desirable add-on electronic features. Systematic experimental, theoretical, and computational studies reveal the underlying mechanics mechanism and guide manufacturability for the transfer printing process in terms of scalability, controllability, and reproducibility.-
dc.language영어-
dc.publisherNational Academy of Sciences-
dc.titleWafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics-
dc.typeArticle-
dc.identifier.doi10.1073/pnas.1806640115-
dc.citation.journaltitleProceedings of the National Academy of Sciences of the United States of America-
dc.identifier.wosid000440285800003-
dc.identifier.scopusid2-s2.0-85051709235-
dc.citation.endpageE7244-
dc.citation.number31-
dc.citation.startpageE7236-
dc.citation.volume115-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorPark, Sangwook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSINGLE-CRYSTAL SILICON-
dc.subject.keywordPlusEPITAXIAL LIFT-OFF-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusSEMICONDUCTOR-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusHETEROJUNCTION-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusCIRCUITS-
dc.subject.keywordPlusADHESION-
dc.subject.keywordAuthortransfer printing method-
dc.subject.keywordAuthorthin-film nanoelectronics-
dc.subject.keywordAuthorInternet of Things-
dc.subject.keywordAuthordelamination-
dc.subject.keywordAuthornondestructive wafer recycling-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Clean Hydrogen Production and Storage, Greenhouse Gas Reduction and Carbon Utilization, Water & Air Purification, 오염수 및 대기 정화 기술, 온실 기체 절감 및 탄소 자원화, 친환경 수소 생산 및 저장

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share