Publications

Detailed Information

Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing

DC Field Value Language
dc.contributor.authorLi, Hong-
dc.contributor.authorAhn, Sung Hoon-
dc.contributor.authorPark, Sangwook-
dc.contributor.authorCai, Lili-
dc.contributor.authorZhao, Jiheng-
dc.contributor.authorHe, Jiajun-
dc.contributor.authorZhou, Minjie-
dc.contributor.authorPark, Joonsuk-
dc.contributor.authorZheng, Xiaolin-
dc.date.accessioned2024-05-14T08:21:48Z-
dc.date.available2024-05-14T08:21:48Z-
dc.date.created2022-11-09-
dc.date.issued2016-09-
dc.identifier.citationApplied Physics Letters, Vol.109 No.13, p. 133103-
dc.identifier.issn0003-6951-
dc.identifier.urihttps://hdl.handle.net/10371/202177-
dc.description.abstract© 2016 Author(s).Acetone sensing is critical for acetone leak detection and holds a great promise for the noninvasive diagnosis of diabetes. It is thus highly desirable to develop a wearable acetone sensor that has low cost, miniature size, sub-ppm detection limit, great selectivity, as well as low operating temperature. In this work, we demonstrate a cost-effective on-chip acetone sensor with excellent sensing performances at 200 °C using molybdenum disulfide (MoS2) catalyzed tungsten oxide (WO3). The WO3 based acetone sensors are first optimized via combined mesoscopic nanostructuring and silicon doping. Under the same testing conditions, our optimized mesoporous silicon doped WO3 [Si:WO3(meso)] sensor shows 2.5 times better sensitivity with ∼1000 times smaller active device area than the state-of-art WO3 based acetone sensor. Next, MoS2 is introduced to catalyze the acetone sensing reactions for Si:WO3(meso), which reduces the operating temperature by 100 °C while retaining its high sensing performances. Our miniaturized acetone sensor may serve as a wearable acetone detector for noninvasive diabetes monitoring or acetone leakage detection. Moreover, our work demonstrates that MoS2 can be a promising nonprecious catalyst for catalytic sensing applications.-
dc.language영어-
dc.publisherAmerican Institute of Physics-
dc.titleMolybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing-
dc.typeArticle-
dc.identifier.doi10.1063/1.4962946-
dc.citation.journaltitleApplied Physics Letters-
dc.identifier.wosid000384747900042-
dc.identifier.scopusid2-s2.0-84989184554-
dc.citation.number13-
dc.citation.startpage133103-
dc.citation.volume109-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorPark, Sangwook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusGAS SENSORS-
dc.subject.keywordPlusSELECTIVE DETECTION-
dc.subject.keywordPlusHUMAN BREATH-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusWO3-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusMOS2-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Clean Hydrogen Production and Storage, Greenhouse Gas Reduction and Carbon Utilization, Water & Air Purification, 오염수 및 대기 정화 기술, 온실 기체 절감 및 탄소 자원화, 친환경 수소 생산 및 저장

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share