Publications

Detailed Information

EPW: A program for calculating the electron-phonon coupling using maximally localized Wannier functions

Cited 317 time in Web of Science Cited 333 time in Scopus
Authors

Noffsinger, Jesse; Giustino, Feliciano; Malone, Brad D.; Park, Cheol-Hwan; Louie, Steven G.; Cohen, Marvin L.

Issue Date
2010-12
Publisher
Elsevier BV
Citation
Computer Physics Communications, Vol.181 No.12, pp.2140-2148
Abstract
EPW (Electron-Phonon coupling using Wannier functions) is a program written in Fortran90 for calculating the electron-phonon coupling in periodic systems using density-functional perturbation theory and maximally localized Wannier functions. EPW can calculate electron-phonon interaction self-energies, electron-phonon spectral functions, and total as well as mode-resolved electron-phonon coupling strengths. The calculation of the electron-phonon coupling requires a very accurate sampling of electron-phonon scattering processes throughout the Brillouin zone, hence reliable calculations can be prohibitively time-consuming. EPW combines the Kohn-Sham electronic eigenstates and the vibrational eigenmodes provided by the Quantum ESPRESSO package (see Giannozzi et al., 2009 [1]) with the maximally localized Wannier functions provided by the wannier90 package (see Mostofi et al., 2008 [2]) in order to generate electron-phonon matrix elements on arbitrarily dense Brillouin zone grids using a generalized Fourier interpolation. This feature of EPW leads to fast and accurate calculations of the electron-phonon coupling, and enables the study of the electron-phonon coupling in large and complex systems. © 2010 Elsevier B.V. All rights reserved.
ISSN
0010-4655
URI
https://hdl.handle.net/10371/202357
DOI
https://doi.org/10.1016/j.cpc.2010.08.027
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Physics and Astronomy
Research Area Condensed Matter Physics, Nanoscale Photonics, Nanoscale Physics, 나노 물리와 나노 광자학, 응집 물질 물리

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share