Publications

Detailed Information

Quasiparticle energies and band gaps in graphene nanoribbons

DC Field Value Language
dc.contributor.authorYang, Li-
dc.contributor.authorPark, Cheol-Hwan-
dc.contributor.authorSon, Young-Woo-
dc.contributor.authorCohen, Marvin L.-
dc.contributor.authorLouie, Steven G.-
dc.date.accessioned2024-05-16T01:20:15Z-
dc.date.available2024-05-16T01:20:15Z-
dc.date.created2023-05-10-
dc.date.created2023-05-10-
dc.date.created2023-05-10-
dc.date.issued2007-11-
dc.identifier.citationPhysical Review Letters, Vol.99 No.18, p. 186801-
dc.identifier.issn0031-9007-
dc.identifier.urihttps://hdl.handle.net/10371/202423-
dc.description.abstractWe present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5-3.0 eV for ribbons of width 2.4-0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable. © 2007 The American Physical Society.-
dc.language영어-
dc.publisherAmerican Physical Society-
dc.titleQuasiparticle energies and band gaps in graphene nanoribbons-
dc.typeArticle-
dc.identifier.doi10.1103/PhysRevLett.99.186801-
dc.citation.journaltitlePhysical Review Letters-
dc.identifier.wosid000250644000044-
dc.identifier.scopusid2-s2.0-35948971778-
dc.citation.number18-
dc.citation.startpage186801-
dc.citation.volume99-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorPark, Cheol-Hwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Physics and Astronomy
Research Area Condensed Matter Physics, Nanoscale Photonics, Nanoscale Physics, 나노 물리와 나노 광자학, 응집 물질 물리

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share