Publications

Detailed Information

Structure-guided isoform identification for the human transcriptome

DC Field Value Language
dc.contributor.authorSommer, Markus J.-
dc.contributor.authorCha, Sooyoung-
dc.contributor.authorVarabyou, Ales-
dc.contributor.authorRincon, Natalia-
dc.contributor.authorPark, Sukhwan-
dc.contributor.authorMinkin, Ilia-
dc.contributor.authorPertea, Mihaela-
dc.contributor.authorSteinegger, Martin-
dc.contributor.authorSalzberg, Steven L.-
dc.date.accessioned2024-05-16T01:26:34Z-
dc.date.available2024-05-16T01:26:34Z-
dc.date.created2023-02-10-
dc.date.created2023-02-10-
dc.date.issued2022-12-
dc.identifier.citationeLife, Vol.11-
dc.identifier.issn2050-084X-
dc.identifier.urihttps://hdl.handle.net/10371/202515-
dc.description.abstractRecently developed methods to predict three-dimensional protein structure with high accuracy have opened new avenues for genome and proteome research. We explore a new hypothesis in genome annotation, namely whether computationally predicted structures can help to identify which of multiple possible gene isoforms represents a functional protein product. Guided by protein structure predictions, we evaluated over 230,000 isoforms of human protein-coding genes assembled from over 10,000 RNA sequencing experiments across many human tissues. From this set of assembled transcripts, we identified hundreds of isoforms with more confidently predicted structure and potentially superior function in comparison to canonical isoforms in the latest human gene database. We illustrate our new method with examples where structure provides a guide to function in combination with expression and evolutionary evidence. Additionally, we provide the complete set of structures as a resource to better understand the function of human genes and their isoforms. These results demonstrate the promise of protein structure prediction as a genome annotation tool, allowing us to refine even the most highly curated catalog of human proteins. More generally we demonstrate a practical, structure-guided approach that can be used to enhance the annotation of any genome.-
dc.language영어-
dc.publishereLife Sciences Publications-
dc.titleStructure-guided isoform identification for the human transcriptome-
dc.typeArticle-
dc.identifier.doi10.7554/eLife.82556-
dc.citation.journaltitleeLife-
dc.identifier.wosid000933155700001-
dc.identifier.scopusid2-s2.0-85145641498-
dc.citation.volume11-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorSteinegger, Martin-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMELATONIN SYNTHESIS-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusSEQUENCE-
dc.subject.keywordPlusPGAP2-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusMUTATIONS-
dc.subject.keywordPlusDATABASE-
dc.subject.keywordAuthorprotein structure prediction-
dc.subject.keywordAuthorgenome annotation-
dc.subject.keywordAuthormouse-
dc.subject.keywordAuthortranscriptomics-
dc.subject.keywordAuthorproteomics-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorHuman-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • School of Biological Sciences
Research Area Development of algorithms to search, cluster and assemble sequence data, Metagenomic analysis, Pathogen detection in sequencing data

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share