Detailed Information

Real time measurements of the secondary organic aerosol formation and aging from ambient air using an oxidation flow reactor in seoul during winter

Cited 2 time in Web of Science Cited 4 time in Scopus

Park, Yoojin; Kim, Hwajin

Issue Date
Pergamon Press Ltd.
Environmental Pollution, Vol.327, p. 121464
Herein, the formation and aging processes of organic aerosol (OA) in urban Seoul, Korea, during winter were investigated using a high-resolution aerosol mass spectrometer (HR-ToF-AMS) and an oxidation flow reactor (OFR). The results demonstrated that the highest secondary OA (SOA) production (ΔOA = 3.44 μg m−3 with a relative OA enhancement ratio (EROA) = 1.40) occurred at ∼2 eq. days of OH exposure. Particularly, higher SOA production was observed under the following atmospheric conditions: high relative humidity (RH) (>70%) and high PM1 mass concentration (>50 μg m−3), demonstrating that oxidation capacity, heterogeneous and aqueous phase reactions are important for further oxidation. Additionally, increased SOA formation occurs under both higher hydrocarbon-like OA and more oxidized OOA conditions. Further oxidation of both freshly emitted and aged and/or transported OA can be a remarkable further source of SOA in winter in Seoul and further downwind areas. In particular, the high mass concentration of MO-OOA in high total PM1 would be an important indication that SOA formation could be accelerated by a heterogeneous reaction, necessitating additional investigations on the haze formation process.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Public Health
  • Department of Environmental Health Sciences
Research Area Aerosol Health Effect, Atmospheric chemistry monitoring and modeling, Chemistry and life cycles of aerosol, 대기화학 모니터링 및 모델링, 대기환경 오염원 및 특성 규명


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.