Publications

Detailed Information

HDAC Inhibitor Trichostatin A Promotes Proliferation and Odontoblast Differentiation of Human Dental Pulp Stem Cells

DC Field Value Language
dc.contributor.authorJin, Hexiu-
dc.contributor.authorPark, Joo-Young-
dc.contributor.authorChoi, Hwajung-
dc.contributor.authorChoung, Pill-Hoon-
dc.date.accessioned2024-05-16T01:39:43Z-
dc.date.available2024-05-16T01:39:43Z-
dc.date.created2020-05-01-
dc.date.created2020-05-01-
dc.date.created2020-05-01-
dc.date.issued2013-03-
dc.identifier.citationTissue Engineering - Part A, Vol.19 No.5-6, pp.613-624-
dc.identifier.issn1937-3341-
dc.identifier.urihttps://hdl.handle.net/10371/202763-
dc.description.abstractTrichostatin A (TSA) is a potent histone deacetylase (HDAC) inhibitor with a broad spectrum of epigenetic activities known to regulate diverse cellular mechanisms, including differentiation of mesenchymal stem cells. In this study, we demonstrate that TSA promotes proliferation and odontoblast differentiation of human dental pulp stem cells (hDPSCs) in vitro and has the ability to enhance dentin formation and odontoblast differentiation in vivo during tooth development. We observed that TSA increased the expression of proliferating cell nuclear antigen and cyclin D1 in hDPSCs at a certain concentration and the activation of JNK/c-Jun pathway was essential for TSA-dependent hDPSC proliferation. Further, TSA accelerated mineral nodule formation in vitro and increased gene expression of dentin sialophosphoprotein, dentin matrix protein 1, bone sialoprotein, and osteocalcin. In addition, TSA significantly upregulated the levels of phospho-Smad2/3, Smad4, and nuclear factor I-C, while the specific inhibitor of Smad3 inhibits TSA enhancing mineralization differentiation of hDPSCs. HDAC3 is downregulated by TSA treatment, suggesting a possible mediator of TSA-dependent pathways among the members of HDAC family. Moreover, TSA-injected embryos exhibited increased dentin thickness, larger dentin areas, and higher odontoblast numbers in their postnatal molars with stronger dentin sialoprotein expression in immunohistochemical staining. These findings indicate that TSA may serve a key role in proliferation and odontoblast differentiation of hDPSCs in dental developmental stages and can be used as an accelerator in dental hard tissue engineering.-
dc.language영어-
dc.publisherMary Ann Liebert Inc.-
dc.titleHDAC Inhibitor Trichostatin A Promotes Proliferation and Odontoblast Differentiation of Human Dental Pulp Stem Cells-
dc.typeArticle-
dc.identifier.doi10.1089/ten.tea.2012.0163-
dc.citation.journaltitleTissue Engineering - Part A-
dc.identifier.wosid000314581100004-
dc.identifier.scopusid2-s2.0-84873399625-
dc.citation.endpage624-
dc.citation.number5-6-
dc.citation.startpage613-
dc.citation.volume19-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorPark, Joo-Young-
dc.contributor.affiliatedAuthorChoung, Pill-Hoon-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusHISTONE DEACETYLASE INHIBITORS-
dc.subject.keywordPlusTHERAPEUTIC AGENTS-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusBETA-
dc.subject.keywordPlusSIALOPROTEIN-
dc.subject.keywordPlusOSTEOGENESIS-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • School of Dentistry
  • Department of Dentistry
Research Area 구강 및 턱뼈 (구강악안면) 의 면역 항상성 유지기전에 대한 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share