Publications

Detailed Information

Enhancement Mode Flexible SnO<sub>2</sub> Thin Film Transistors Via a UV/Ozone-Assisted Sol-Gel Approach

DC Field Value Language
dc.contributor.authorJang, Bongho-
dc.contributor.authorKang, Hongki-
dc.contributor.authorLee, Won-Yong-
dc.contributor.authorBae, Jin-Hyuk-
dc.contributor.authorKang, In-Man-
dc.contributor.authorKim, Kwangeun-
dc.contributor.authorKwon, Hyuk-Jun-
dc.contributor.authorJang, Jaewon-
dc.date.accessioned2024-05-16T04:43:35Z-
dc.date.available2024-05-16T04:43:35Z-
dc.date.created2024-04-30-
dc.date.created2024-04-30-
dc.date.issued2020-07-
dc.identifier.citationIEEE Access, Vol.8, pp.123013-123018-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://hdl.handle.net/10371/203110-
dc.description.abstractThe effect of ultraviolet/Ozone (UV/O-3)-assisted annealing process on the structural, chemical, and electrical properties of sol-gel-processed SnO2 films is investigated in this study. Via the UV/O-3-assisted annealing processes, mixed-phase SnO2 films composed of amorphous SnO2 and polycrystalline SnO were obtained. Furthermore, the XPS spectra indicate an increase in the SnO2/SnO ratio and a substantial decrease in the number of -OH groups (serving as trap sites). This results in an increase in the conductivity and field-effect mobility of the films. The field-effect mobility of the UV/Ozone-assisted 300 degrees C-annealed SnO2 thin film transistor (TFT) increases considerably (by similar to 500x), yielding a device with a field-effect mobility of 3.09 cm(2)/Vs. In addition, fiexible SnO2 TFTs with Al2O3 insulator and Au gate on Polyimide substrate fabricated via gate electrode engineering shows a decreased conduction bandgap offset, compared to the SnO2 TFTs on SiO2, and enhancement mode operation properties (normally off at zero gate voltage) with a field-effect mobility of 1.87 cm(2)/Vs.-
dc.language영어-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleEnhancement Mode Flexible SnO2 Thin Film Transistors Via a UV/Ozone-Assisted Sol-Gel Approach-
dc.typeArticle-
dc.identifier.doi10.1109/ACCESS.2020.3007372-
dc.citation.journaltitleIEEE Access-
dc.identifier.wosid000553753700001-
dc.identifier.scopusid2-s2.0-85088662136-
dc.citation.endpage123018-
dc.citation.startpage123013-
dc.citation.volume8-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKang, Hongki-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordAuthorSol-gel-
dc.subject.keywordAuthorSnO2-
dc.subject.keywordAuthorUV/Ozone-
dc.subject.keywordAuthorthin film transistors-
dc.subject.keywordAuthorenhancement mode-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Biosensors, Microelectronics, Neurotechnology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share