Publications

Detailed Information

High temperature low cycle fatigue properties of 24Cr ferritic stainless steel for SOFC applications

Cited 6 time in Web of Science Cited 6 time in Scopus
Authors

Kim, Byung Kyu; Kim, Dong Ik; Choi, In Suk; Jung, Woo Sang; Kwun, Sook In

Issue Date
2013-08
Publisher
Elsevier BV
Citation
Materials Science and Engineering: A, Vol.577, pp.81-86
Abstract
The low cycle fatigue (LCF) properties of 24Cr ferritic stainless steel for solid oxide fuel cell interconnects were investigated. The fatigue strength of 24Cr stainless steel decreased with increasing temperature, but the fatigue life increased at 600 degrees C and 700 degrees C. The fatigue behavior at room temperature (RI) was characterized as cyclic hardening followed by saturation and cyclic softening while marginal cyclic hardening was observed at 600 degrees C and 700 degrees C. The superior oxidation resistance of 24Cr stainless steel allows preventing the fatal impact of oxidation on the high-temperature fatigue life. Microstructural analysis showed that persistent slip bands (PSBs) developed prevalently at RI but not at 600 degrees C and 700 degrees C. Such temperature-dependent microstructural difference retarded the crack initiation and prolonged fatigue life at high temperatures. (C) 2013 Elsevier B.V. All rights reserved.
ISSN
0921-5093
URI
https://hdl.handle.net/10371/203308
DOI
https://doi.org/10.1016/j.msea.2013.04.036
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area High Temperature Alloys, High Strength , Nano Mechanics and Nano Structure Design for Ultra Strong Materials, Shape and Pattern Design for Engineering Materials

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share