Publications

Detailed Information

Steady State Responses: Electrophysiological Assessment of Sensory Function in Schizophrenia

Cited 184 time in Web of Science Cited 195 time in Scopus
Authors

Brenner, Colleen A.; Krishnan, Giri P.; Vohs, Jenifer L.; Ahn, Woo-Young; Hetrick, William P.; Morzorati, Sandra L.; O'Donnell, Brian F.

Issue Date
2009-11
Publisher
Oxford University Press
Citation
Schizophrenia Bulletin, Vol.35 No.6, pp.1065-1077
Abstract
Persons with schizophrenia experience subjective sensory anomalies and objective deficits on assessment of sensory function. Such deficits could be produced by abnormal signaling in the sensory pathways and sensory cortex or later stage disturbances in cognitive processing of such inputs. Steady state responses (SSRs) provide a noninvasive method to test the integrity of sensory pathways and oscillatory responses in schizophrenia with minimal task demands. SSRs are electrophysiological responses entrained to the frequency and phase of a periodic stimulus. Patients with schizophrenia exhibit pronounced auditory SSR deficits within the gamma frequency range (35-50 Hz) in response to click trains and amplitude-modulated tones. Visual SSR deficits are also observed, most prominently in the alpha and beta frequency ranges (7-30 Hz) in response to high-contrast, high-luminance stimuli. Visual SSR studies that have used the psychophysical properties of a stimulus to target specific visual pathways predominantly report magnocellular-based deficits in those with schizophrenia. Disruption of both auditory and visual SSRs in schizophrenia are consistent with neuropathological and magnetic resonance imaging evidence of anatomic abnormalities affecting the auditory and visual cortices. Computational models suggest that auditory SSR abnormalities at gamma frequencies could be secondary to T-aminobutyric acid-mediated or N-methyl-D-aspartic acid dysregulation. The pathophysiological process in schizophrenia encompasses sensory processing that probably contributes to alterations in subsequent encoding and cognitive processing. The developmental evolution of these abnormalities remains to be characterized.
ISSN
0586-7614
URI
https://hdl.handle.net/10371/203421
DOI
https://doi.org/10.1093/schbul/sbp091
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Social Sciences
  • Department of Psychology
Research Area Addiction, computational neuroscience, decision neuroscience, 계산 신경과학, 의사결정 신경과학, 중독

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share