Publications

Detailed Information

Graphene mechanical oscillators with tunable frequency

Cited 237 time in Web of Science Cited 253 time in Scopus
Authors

Chen, Changyao; Lee, Sunwoo; Deshpande, Vikram V.; Lee, Gwan-Hyoung; Lekas, Michael; Shepard, Kenneth; Hone, James

Issue Date
2013-12
Publisher
Nature Publishing Group
Citation
Nature Nanotechnology, Vol.8 No.12, pp.923-927
Abstract
Oscillators, which produce continuous periodic signals from direct current power, are central to modern communications systems, with versatile applications including timing references and frequency modulators(1-7). However, conventional oscillators typically consist of macroscopic mechanical resonators such as quartz crystals, which require excessive off-chip space. Here, we report oscillators built on micrometre-size, atomically thin graphene nanomechanical resonators, whose frequencies can be electrostatically tuned by as much as 14%. Self-sustaining mechanical motion is generated and transduced at room temperature in these oscillators using simple electrical circuitry. The prototype graphene voltage-controlled oscillators exhibit frequency stability and a modulation bandwidth sufficient for the modulation of radiofrequency carrier signals. As a demonstration, we use a graphene oscillator as the active element for frequency-modulated signal generation and achieve efficient audio signal transmission.
ISSN
1748-3387
URI
https://hdl.handle.net/10371/203530
DOI
https://doi.org/10.1038/NNANO.2013.232
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area 2D materials, 2차원 물질, Smiconductor process, semiconductor devices, 반도체 공정, 반도체 소자

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share