Publications

Detailed Information

Formation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence

DC Field Value Language
dc.contributor.authorKang, M.-
dc.contributor.authorJeon, S.-
dc.contributor.authorJen, T.-
dc.contributor.authorLee, J. -E.-
dc.contributor.authorSih, V.-
dc.contributor.authorGoldman, R. S.-
dc.date.accessioned2024-05-21T02:25:44Z-
dc.date.available2024-05-21T02:25:44Z-
dc.date.created2024-05-21-
dc.date.created2024-05-21-
dc.date.created2024-05-21-
dc.date.issued2017-07-
dc.identifier.citationJOURNAL OF APPLIED PHYSICS, Vol.122 No.3-
dc.identifier.issn0021-8979-
dc.identifier.urihttps://hdl.handle.net/10371/203563-
dc.description.abstractWe introduce a novel approach to the seamless integration of plasmonic nanoparticle (NP) arrays into semiconductor layers and demonstrate their enhanced photoluminescence (PL) efficiency. Our approach utilizes focused ion beam-induced self-assembly of close-packed arrays of Ga NPs with tailorable NP diameters, followed by overgrowth of GaAs layers using molecular beam epitaxy. Using a combination of PL spectroscopy and electromagnetic computations, we identify a regime of Ga NP diameter and overgrown GaAs layer thickness where NP-array-enhanced absorption in GaAs leads to enhanced GaAs near-band-edge (NBE) PL efficiency, surpassing that of high-quality epitaxial GaAs layers. As the NP array depth and size are increased, the reduction in spontaneous emission rate overwhelms the NP-array-enhanced absorption, leading to a reduced NBE PL efficiency. This approach provides an opportunity to enhance the PL efficiency of a wide variety of semiconductor heterostructures. Published by AIP Publishing.-
dc.language영어-
dc.publisherAMER INST PHYSICS-
dc.titleFormation of embedded plasmonic Ga nanoparticle arrays and their influence on GaAs photoluminescence-
dc.typeArticle-
dc.identifier.doi10.1063/1.4990946-
dc.citation.journaltitleJOURNAL OF APPLIED PHYSICS-
dc.identifier.wosid000406128800002-
dc.identifier.scopusid2-s2.0-85025072188-
dc.citation.number3-
dc.citation.volume122-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, J. -E.-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusGALLIUM NANOPARTICLES-
dc.subject.keywordPlusDIELECTRIC LAYERS-
dc.subject.keywordPlusSEMICONDUCTOR-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusRESONANCE-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordPlusEMISSION-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Physics and Astronomy
Research Area Condensed Matter Physics, Nanoscale Physics and Photonics, 나노 물리와 나노 광자학, 응집 물질 물리

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share