Detailed Information

Bacterial contamination of the wound during primary total hip and knee replacement Median 13 years of follow-up of 90 replacements

Cited 41 time in Web of Science Cited 0 time in Scopus

Kim, Youngkwon; Yi, Seung-Muk; Heo, Jongbae; Kim, Hwajin; Lee, Woojoo; Kim, Ho; Hopke, Philip K.; Lee, Young Su; Shin, Hye-Jung; Park, Jungmin; Yoo, Myungsoo; Jeon, Kwonho; Park, Jieun

Issue Date
Pergamon Press Ltd.
Environmental Pollution, Vol.85 No.2, pp.159-164
East Asian countries have been conducting source apportionment of fine particulate matter (PM2.5) by applying positive matrix factorization (PMF) to hourly constituent concentrations. However, some of the constituent data from the supersites in South Korea was missing due to instrument maintenance and calibration. Conventional preprocessing of missing values, such as exclusion or median replacement, causes biases in the estimated source contributions by changing the PMF input. Machine learning (ML) can estimate the missing values by training on constituent data, meteorological data, and gaseous pollutants. Complete data from the Seoul Supersite in 2018 was taken, and a random 20% was set as missing. PMF was performed by replacing missing values with estimates. Percent errors of the source contributions were calculated compared to those estimated from complete data. Missing values were estimated using a random forest analysis. Estimation accuracy (r2) was as high as 0.874 for missing carbon species and low at 0.631 when ionic species and trace elements were missing. For the seven highest contributing sources, replacing the missing values of carbon species with estimates minimized the percent errors to 2.0% on average. However, replacing the missing values of the other chemical species with estimates increased the percent errors to more than 9.7% on average. Percent errors were maximal at 37% on average when missing values of ionic species and trace elements were replaced with estimates. Missing values, except for carbon species, need to be excluded. This approach reduced the percent errors to 7.4% on average, which was lower than those due to median replacement. Our results show that reducing the biases in source apportionment is possible by replacing the missing values of carbon species with estimates. To improve the biases due to missing values of the other chemical species, the estimation accuracy of the ML needs to be improved.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • Graduate School of Public Health
  • Department of Environmental Health Sciences
Research Area Aerosol Health Effect, Atmospheric chemistry monitoring and modeling, Chemistry and life cycles of aerosol, 대기화학 모니터링 및 모델링, 대기환경 오염원 및 특성 규명


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.