Publications
Detailed Information
Finding Efficient Pruned Network via Refined Gradients for Pruned Weights
Cited 0 time in
Web of Science
Cited 0 time in Scopus
- Authors
- Issue Date
- 2023
- Publisher
- Association for Computing Machinery, Inc
- Citation
- MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia, pp.9003-9011
- Abstract
- With the growth of deep neural networks (DNN), the number of DNN parameters has drastically increased. This makes DNN models hard to be deployed on resource-limited embedded systems. To alleviate this problem, dynamic pruning methods have emerged, which try to find diverse sparsity patterns during training by utilizing Straight-Through-Estimator (STE) to approximate gradients of pruned weights. STE can help the pruned weights revive in the process of finding dynamic sparsity patterns. However, using these coarse gradients causes training instability and performance degradation owing to the unreliable gradient signal of the STE approximation. In this work, to tackle this issue, we introduce refined gradients to update the pruned weights by forming dual forwarding paths from two sets (pruned and unpruned) of weights. We propose a novel Dynamic Collective Intelligence Learning (DCIL) which makes use of the learning synergy between the collective intelligence of both weight sets. We verify the usefulness of the refined gradients by showing enhancements in the training stability and the model performance on the CIFAR and ImageNet datasets. DCIL outperforms various previously proposed pruning schemes including other dynamic pruning methods with enhanced stability during training. The code is provided in Github.
- Files in This Item:
- There are no files associated with this item.
Related Researcher
- Graduate School of Convergence Science & Technology
- Department of Intelligence and Information
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.