Publications
Detailed Information
Highly stretchable and oxidation-resistive Cu nanowire heater for replication of the feeling of heat in a virtual world
Cited 58 time in
Web of Science
Cited 61 time in Scopus
- Authors
- Issue Date
- 2020-05
- Publisher
- Royal Society of Chemistry
- Citation
- Journal of Materials Chemistry A, Vol.8 No.17, pp.8281-8291
- Abstract
- A thermal haptic device (THD) is used to implement temperature information in many virtual environments. The THD enables a user to feel the temperature as well as the thermal conductivity. Moreover, as temperature influences human emotion and preference, the THD enriches senses and experiences in a virtual environment. In this paper, we propose laser-assisted dual-function copper nanowire (CuNW) polyurethane acrylate (PUA) patterns for use as feedback controllable stretchable heaters as a 12-pixels THD, with highly enhanced mechanical and chemical durability. The CuNW-PUA pattern retains the stretchability from its serpentine mesh form, and the CuNW embedded in the PUA structure provides mechanical and chemical stability, facilitating a stable resistance. The CuNW-PUA pattern serves as a simultaneous heater and thermometer with accurate temperature control. Furthermore, the CuNWPUA pattern is fabricated using a simple, fast, and elaborate laser process under ambient conditions. Finally, the CuNW-PUA pattern was used to realize heat transfer in various virtual environments in the form of 12-pixels on a nylon glove, showing potential for stretchable applications in next generation devices.
- ISSN
- 2050-7488
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.