Publications

Detailed Information

Boosted thermal conductance of polycrystalline graphene by spin-coated silver nanowires

DC Field Value Language
dc.contributor.authorLee, Woorim-
dc.contributor.authorKihm, Kenneth David-
dc.contributor.authorLee, Woomin-
dc.contributor.authorWon, Phillip-
dc.contributor.authorHan, Seonggeun-
dc.contributor.authorLim, Gyumin-
dc.contributor.authorPyun, Kyung Rok-
dc.contributor.authorKo, Seung Hwan-
dc.date.accessioned2024-08-08T01:29:05Z-
dc.date.available2024-08-08T01:29:05Z-
dc.date.created2020-03-31-
dc.date.created2020-03-31-
dc.date.issued2019-05-
dc.identifier.citationInternational Journal of Heat and Mass Transfer, Vol.134, pp.547-553-
dc.identifier.issn0017-9310-
dc.identifier.urihttps://hdl.handle.net/10371/206231-
dc.description.abstractSpin-coated silver nanowires (AgNWs) on graphene show a significantly improved thermal conductance of the composite in comparison with pristine graphene with no nanowires. CVD-synthesized graphene is transferred onto an 8-nm thin TEM grid substrate, and AgNWs (average diameter 150-nm and average length 30-mu m) are chemically grown from an AgNO3 reagent solution. The AgNW bridging overrides the negative effect of the grain boundary scattering of the electron/phonon energy carriers propagating in the polycrystalline CVD graphene and ultimately enhances the grain-to-grain heat transport by widening their passages. This boosting contribution of AgNWs is quantitatively assessed by measurement of thermal conductance for synthesized AgNW/graphene composite samples. The Raman thermometry measurement locations are selected to be beside a single AgNW (G-1), two AgNWs (G-2), and three or more AgNWs (G-3), so that the effect of AgNW density can be examined. The average enhanced thermal conductance values for the three AgNW-laid graphene samples are 319.27 nW/K, 343.66 nW/K, and 455.26 nW/K, respectively. (C) 2019 Elsevier Ltd. All rights reserved.-
dc.language영어-
dc.publisherPergamon Press Ltd.-
dc.titleBoosted thermal conductance of polycrystalline graphene by spin-coated silver nanowires-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2019.01.052-
dc.citation.journaltitleInternational Journal of Heat and Mass Transfer-
dc.identifier.wosid000462418300048-
dc.identifier.scopusid2-s2.0-85060310062-
dc.citation.endpage553-
dc.citation.startpage547-
dc.citation.volume134-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKo, Seung Hwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusTEMPERATURE-DEPENDENCE-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusEXPANSION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusDEFECTS-
dc.subject.keywordPlusSPECTRA-
dc.subject.keywordAuthorSpin-coated silver nanowires-
dc.subject.keywordAuthorPolycrystalline CVD graphene-
dc.subject.keywordAuthorThermal conductance enhancement-
dc.subject.keywordAuthorOptothermal Raman thermometry-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Laser Assisted Patterning, Liquid Crystal Elastomer, Stretchable Electronics, 로보틱스, 스마트 제조, 열공학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share