Publications
Detailed Information
Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency
Cited 12 time in
Web of Science
Cited 16 time in Scopus
- Authors
- Issue Date
- 2018-10
- Publisher
- Pergamon Press Ltd.
- Citation
- Chemosphere, Vol.208, pp.916-921
- Abstract
- Arsenic stabilization mechanism in a mine waste was investigated using a basic oxygen furnace (BOF) slag. A lab-scale batch test was carried out to stabilize As in the mine waste samples for 1 h, where various amounts of the BOF slag and distilled water were introduced. Different stabilization efficiencies were observed depending on the stabilizing conditions (i.e., BOF slag content and water to mine waste (14 S) ratio). The stabilization efficiencies ranged 75-92% and 92-95% for 5% (w-slag/w-mine waste) and 10% BOF slag treated mine waste samples, respectively. Interestingly, a notable effect of the L/S ratio on the stabilization efficiency was observed (78% at 0.05 L/kg, and 23% at 1.0 L/kg) at the 3% BOF slag treatment. The point of zero charge and the stabilizing pH indicated that the BOF slag surface was negatively charged. Based on the comparison of fresh and Ca-reduced BOF slags, As stabilization mechanism was determined to be adsorption through cation bridges by Ca2+. The Surface analysis using X-ray photoelectron spectroscopy (XPS) and the stabilization experiment conducted at lower pH provided evidence that the hindrance of As adsorption resulted from Ca(OH)(2) precipitation on the BOF slag surface when excess water (1.0 L/kg) was added. Such effect of water content seemed to be overcome by providing an excessive amount of the BOF slag. When an ample amount of Ca2+ is provided and pH is maintained around 11, not only As adsorption but also calcium arsenate precipitation occur, and both contributed to the stabilization mechanisms of As. (C) 2018 Elsevier Ltd. All rights reserved.
- ISSN
- 0045-6535
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.