Publications

Detailed Information

Control and manipulation of nano cracks mimicking optical wave

Cited 15 time in Web of Science Cited 14 time in Scopus
Authors

Suh, Young D.; Yeo, Junyeob; Lee, Habeom; Hong, Sukjoon; Kwon, Jinhyeong; Kim, Kyunkyu; Ko, Seung Hwan

Issue Date
2015-11
Publisher
Nature Publishing Group
Citation
Scientific Reports, Vol.5, p. 17292
Abstract
Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area. Interestingly, various nano-cracks behaved similar to optical wave including refraction, total internal reflection and evanescent wave. This novel phenomena of controlled cracking was used to fabricate sophisticated nano/micro patterns in large area which cannot be obtained even with conventional nanofabrication methods. We also have showed that the cracks are directly implementable into a nano/micro-channel application since the cracks naturally have a form of channel-like shape.
ISSN
2045-2322
URI
https://hdl.handle.net/10371/207094
DOI
https://doi.org/10.1038/srep17292
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Mechanical Engineering
Research Area Laser Assisted Patterning, Liquid Crystal Elastomer, Stretchable Electronics, 로보틱스, 스마트 제조, 열공학

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share