Publications

Detailed Information

N-myc downstream-regulated gene 1 is involved in the regulation of cystogenesis in transgenic mice overexpressing human PKD2 gene

Cited 3 time in Web of Science Cited 3 time in Scopus
Authors

Kim, Bo Hye; Park, Eun Young; Yoo, Kyung Hyun; Choi, Kyung Mi; Kim, Yona; Seong, Je Kyung; Park, Jong Hoon

Issue Date
2013-01
Publisher
John Wiley & Sons Ltd.
Citation
Proteomics, Vol.13 No.1, pp.134-141
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inheritable and progressive kidney disease featured by the formation of fluid-filled cysts. In a previous study, transgenic mice overexpressing human PKD2 gene were produced as an ADPKD animal model. To select genes controlled by PKD2, 2DE was performed using kidney tissues of 12- and 18-month-old transgenic mice. The protein localization was detected by immunohistochemistry, and 3D culture was utilized to observe in vitro cystogenesis. As a result, N-myc downstream-regulated gene 1 (NDRG1) was chosen as a candidate regulator gene of cystogenesis. NDRG1 is an intracellular protein involved in cellular proliferation and differentiation. This gene was expressed much higher in the kidney of hPKD2 TG mice. Also, the high level of NDRG1 protein was detected in the cyst lining epithelial cells. The hypothesis that PKD2 gene regulates NDRG1 expression was supported, and NDRG1 knockdown resulted in attenuation of cyst growth in vitro. Furthermore, NDRG1 knockdown suppressed cellular growth in mouse inner medullary collecting duct-3 cells. We found that early growth response 1, a transcription factor that binds to the NDRG1 promoter, was mediated in the NDRG1 expression regulation by PKD2. In this study, we found the novel gene that was involved in cystogenesis, which will provide the new insight in ADPKD.
ISSN
1615-9853
URI
https://hdl.handle.net/10371/207716
DOI
https://doi.org/10.1002/pmic.201200248
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share