Publications

Detailed Information

Interleukin-1 promotes coagulation, which is necessary for protective immunity in the lung against streptococcus pneumoniae infection

Cited 29 time in Web of Science Cited 33 time in Scopus
Authors

Yang, Hyungjun; Ko, Hyun-Jeong; Yang, Jin-Young; Kim, Jae-Jin; Seo, Sang-Uk; Park, Seung Gu; Choi, Sun Shim; Seong, Je Kyung; Kweon, Mi-Na

Issue Date
2013-01
Publisher
University of Chicago Press
Citation
Journal of Infectious Diseases, Vol.207 No.1, pp.50-60
Abstract
Interleukin (IL)-1 is a well-known cytokine for the initiation of innate immunity in bacterial infection. However, the underlying mechanism of IL-1 on the respiratory infection is not fully elucidated. We studied how IL-1 contributes to the host defense against Streptococcus pneumoniae. IL-1R(-/-) mice showed high mortality, local cytokine storm, and substantial infiltrates in the lower respiratory tract after intratracheal challenge with S. pneumoniae. The IL-1-deficient condition did not suppress the propagation of bacteria in the lung, although the recruitment and the bacteria-killing ability of neutrophils (CD11b(+)Ly6C(+)Ly6G(+)) were not defective compared with wild-type mice. Unexpectedly, we found that the transcription of fibrinogen alpha and gamma genes were highly activated in the lungs of wild-type mice after the infection, whereas no significant changes were found in IL-1R(-/-) mice. Of note, synthesis of fibrinogen was dependent on the IL-1-IL-6-Stat3 cascade. Treatment with recombinant fibrinogen improved survival and bacterial propagation in the IL-1R(-/-) mice and blockade of the coagulation increased the susceptibility of wild-type mice to pneumococcal pneumonia. Our findings suggest that IL-1 signaling leads to the synthesis of fibrinogen in the lung after pneumococcus infection and is followed by coagulation, which contributes to the control of bacterial infection in the pulmonary tract.
ISSN
0022-1899
URI
https://hdl.handle.net/10371/207718
DOI
https://doi.org/10.1093/infdis/jis651
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share