Publications

Detailed Information

Effects of age and treadmill exercise in chronic diabetic stages on neuroblast differentiation in a rat model of type 2 diabetes

Cited 22 time in Web of Science Cited 22 time in Scopus
Authors

Hwang, In Koo; Yi, Sun Shin; Song, Wook; Won, Moo-Ho; Yoon, Yeo Sung; Seong, Je Kyung

Issue Date
2010-06
Publisher
Elsevier BV
Citation
Brain Research, Vol.1341, pp.63-71
Abstract
In the present study, we investigated the effects of type 2 diabetes and treadmill exercise in chronic diabetic stages on neuroblast differentiation using doublecortin (DCX) in the subgranular zone of the dentate gyrus (SZDG) in Zucker diabetic fatty (ZDF) rats. Four-, 12-, 20- and 30-week-old Zucker lean control (ZLC) and ZDF rats were used to elucidate age-dependent changes of DCX-immunoreactive neuroblasts. DCX-immunoreactive neuroblasts were significantly decreased with age in the SZDG. This reduction was prominent in the age-matched ZDF rats compared to that in the ZLC rats. To investigate the effects of treadmill exercise, ZLC and ZDF rats at 23 weeks of age were put on the treadmill with or without running for 1 h/day/5 consecutive days at 12–16 m/min for 7 weeks. Treadmill exercise significantly increased the tertiary dendrites of DCX-immunoreactive neuroblasts in both ZLC and ZDF rats. In addition, exercise significantly increased the number of DCX-immunoreactive neuroblasts in the ZLC rats, but not in the ZDF rats. These results suggest that diabetes significantly decreases neuroblast differentiation and treadmill exercise in chronic diabetic animals has limitation to increase neuroblast differentiation although it increases neural plasticity.
ISSN
0006-8993
URI
https://hdl.handle.net/10371/208131
DOI
https://doi.org/10.1016/j.brainres.2009.12.009
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share