Publications

Detailed Information

Intraseasonal variability of the zonal-mean extratropical tropopause height

Cited 17 time in Web of Science Cited 19 time in Scopus
Authors

Son, Seok-Woo; Lee, Sukyoung; Feldstein, Steven B.

Issue Date
2007
Publisher
American Meteorological Society
Citation
Journal of the Atmospheric Sciences, Vol.64 No.2, pp.608-620
Abstract
The physical processes that drive the fluctuations of the extratropical tropopause height are examined with the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data. A composite zonal-mean heat budget analysis for the Northern Hemisphere winter shows that fluctuations in the extratropical tropopause height result not only from a warming of the troposphere but also from an even stronger cooling of the lower stratosphere. While the tropospheric warming is caused by a poleward eddy heat transport associated with baroclinic eddies, the stratospheric cooling is driven primarily by planetary-scale waves. The results from analyses of synoptic- and planetary-scale eddy kinetic energy and Eliassen-Palm fluxes are consistent with the planetary waves first gaining their energy within the troposphere, and then propagating vertically into the stratosphere. For the Southern Hemisphere, while lower-stratospheric temperature anomalies still play an important role for the fluctuations in the tropopause height, the temperature anomalies are accounted for primarily by a poleward eddy heat transport associated with synoptic-scale eddies, and by diabatic heating. These results indicate that, although the height of the extratropical tropopause is modulated by baroclinic eddies, which is consistent with existing theories, the amount of the modulation is highly influenced by stratospheric processes. © 2007 American Meteorological Society.
ISSN
0022-4928
URI
https://hdl.handle.net/10371/208490
DOI
https://doi.org/10.1175/JAS3855.1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Climate Change, Polar Environmental, Severe Weather, 극지환경, 기후과학, 위험기상

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share