Publications

Detailed Information

Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards

Cited 122 time in Web of Science Cited 131 time in Scopus
Authors

Kim, Hyoung F.; Hikosaka, Okihide

Issue Date
2015-07
Publisher
Oxford University Press
Citation
Brain, Vol.138 No.7, pp.1776-1800
Abstract
The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of the caudate nucleus, both of which target the superior colliculus. These two caudate regions encode the reward values of visual objects differently: flexible (short-term) values by the caudate head and stable (long-term) values by the caudate tail. These value signals in the caudate guide the orienting of gaze differently: voluntary saccades by the caudate head circuit and automatic saccades by the caudate tail circuit. Moreover, separate groups of dopamine neurons innervate the caudate head and tail and may selectively guide the flexible and stable learning/memory in the caudate regions. Studies focusing on manual handling of objects also suggest that rostrocaudally separated circuits in the basal ganglia control the action differently. These results suggest that the basal ganglia contain parallel circuits for two steps of goal-directed behaviour: finding valuable objects and manipulating the valuable objects. These parallel circuits may underlie voluntary behaviour and automatic skills, enabling animals (including humans) to adapt to both volatile and stable environments. This understanding of the functions and mechanisms of the basal ganglia parallel circuits may inform the differential diagnosis and treatment of basal ganglia disorders.
ISSN
0006-8950
URI
https://hdl.handle.net/10371/216768
DOI
https://doi.org/10.1093/brain/awv134
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • School of Biological Sciences
Research Area Cognitive Neuroscience, Learning and Memory of Primates, Neuroscience, 뇌인지신경생물학, 신경생물학, 영장류 학습과 기억

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share