Publications

Detailed Information

An Aplysia type 4 phosphodiesterase homolog localizes at the presynaptic terminals of Aplysia neuron and regulates synaptic facilitation

Cited 25 time in Web of Science Cited 24 time in Scopus
Authors

Park, H; Lee, JA; Lee, C; Kim, MJ; Chang, DJ; Kim, H; Lee, SH; Lee, YS; Kaang, BK

Issue Date
2005-09
Publisher
SOC NEUROSCIENCE
Citation
JOURNAL OF NEUROSCIENCE, Vol.25 No.39, pp.9037-9045
Abstract
The cAMP-dependent signaling pathway is critically involved in memory-related synaptic plasticity. cAMP-specific type 4 phosphodiesterases (PDE4) play a role in this process by regulating the cAMP concentration. However, it is unclear how PDE4 is involved in regulating synaptic plasticity. To address this issue in Aplysia sensory-to-motor synapses, we identified a long isoform of the PDE4 homolog in Aplysia kurodai (apPDE), with genetic and biochemical properties similar to those of mammalian PDE4s. Furthermore, apPDE is localized to the membrane and presynaptic region. Both apPDE overexpression and knock-down impaired short- and long-term facilitation, indicating that an appropriate expression level of apPDE in synaptic regions is required for normal synaptic facilitation. By using fluorescence resonance energy transfer-based measurement of in vivo protein kinase A (PKA) activation, we found that the PKA activation by 5-hydroxytryptamine (5-HT) was impaired in both apPDE-overexpressed and knock-down synapses. Analogous to the inhibition of apPDE by RNA interference, chronic rolipram treatment before 5-HT stimulation also impaired the PKA activation by 5-HT, suggesting that regulation of the synaptic cAMP level by PDE4 is critical for normal synaptic facilitation. Together, we suggest that PDE4s localized in the synapses play a critical role in regulating the optimum cAMP level required for normal synaptic plasticity.
ISSN
0270-6474
URI
https://hdl.handle.net/10371/216787
DOI
https://doi.org/10.1523/JNEUROSCI.1989-05.2005
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • School of Biological Sciences
Research Area Cognitive Neuroscience, Learning and Memory of Primates, Neuroscience, 뇌인지신경생물학, 신경생물학, 영장류 학습과 기억

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share