Publications
Detailed Information
A sustainable strategy to reduce net methane emissions from thermokarst lakes by electrochemical methane partial oxidation
Cited 2 time in
Web of Science
Cited 2 time in Scopus
- Authors
- Issue Date
- 2025-05
- Publisher
- ELSEVIER
- Citation
- APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, Vol.364
- Abstract
- Global warming increases methane emissions from Arctic permafrost, which in turn reaccelerates global warming, creating a vicious cycle. Addressing this issue requires innovative solutions, such as electro-assisted methane partial oxidation (EMPO), which can provide an on-site facility for sustainable methane emission reduction in permafrost. In this study, a Co singe-atom catalyst was synthesized as an oxygen reduction reaction (ORR) catalyst that can be practically applied to stand-alone EMPO systems. To address performance degradation and cold weather freezing due to flooding of the electrodes, the hydrophobic polytetrafluoroethylene was mixed into a catalyst layer to regulate the microenvironment near cathodes. Furthermore, hydrophobic cathodes offer a pathway for nonpolar gases to increase the local concentration of methane. The enhanced local methane concentration, combined with an efficient ORR catalyst, yields 8 mmol g(cat)(-1) formic acid at a low potential bias. Remarkably, the EMPO system exhibits a consistent production even with air and is highly stable. This leads to possibility of on-site facility for methane conversion without external energy at thermokarst lakes.
- ISSN
- 0926-3373
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.