Publications

Detailed Information

PEDOT-PSS embedded comb copolymer membranes with improved CO2 capture : PEDOT-PSS embedded comb copolymer membranes with improved CO<sub>2</sub> capture

Cited 20 time in Web of Science Cited 21 time in Scopus
Authors

Lee, Jae Hun; Jung, Jung Pyo; Jang, Eunji; Lee, Ki Bong; Hwang, Yun Jeong; Min, Byoung Koun; Kim, Jong Hak

Issue Date
2016-11
Publisher
Elsevier BV
Citation
Journal of Membrane Science, Vol.518, pp.21-30
Abstract
Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) is a widely used conductive polymer in various electronic devices. Here we report the first use of PEDOT-PSS to enhance CO2 capture performance of all-polymeric membranes. Specifically, an amphiphilic comb copolymer, i.e. poly(2-[-3(2H-benzotriazol-2-yl)-4-hydroxyphenyll ethyl methacrylate)-poly(oxyethylene methacrylate) (PBEMPOEM or PBE), was synthesized to disperse PEDOT-PSS chains. Isolated and aggregated PEDOT-PSS transformed into an interconnected network structure upon combination with PBE, due to specific interactions. Incorporation of PEDOT-PSS generated a facile pathway for enhanced diffusive transport, resulting in improved CO2 and N-2 permeability. However, CO2 permeability increased more significantly due to enhanced CO2 solubility, resulting in slight increase in CO2/N-2 selectivity. The PBE membrane containing PEDOT-PSS 5 wt% showed the highest performance with a CO2 permeability of 59.6 Barrer and CO2/N-2 selectivity of 77.4. The performance of PBE/PEDOT-PSS membranes was very close to the 2008 Robeson upper bound and much higher than those of PBE/PEDOT, PBE/PSS and commercial PEBAX membranes. (C) 2016 Elsevier B.V. All rights reserved.
ISSN
0376-7388
URI
https://hdl.handle.net/10371/218519
DOI
https://doi.org/10.1016/j.memsci.2016.06.025
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Artificial Photosynthesis, Electrochemical CO2 Utilization, Solar to chemical conversion device, 인공 광합성, 전기화학적 CO 2 활용, 태양광을 화학으로 변환하는 장치

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share