Publications
Detailed Information
Detection and differentiation of ataxic and hypokinetic dysarthria in cerebellar ataxia and parkinsonian disorders via wave splitting and integrating neural networks
Cited 8 time in
Web of Science
Cited 12 time in Scopus
- Authors
- Issue Date
- 2022
- Publisher
- Public Library of Science
- Citation
- PLoS ONE, Vol.17 No.6
- Abstract
- Dysarthria may present during the natural course of many degenerative neurological conditions. Hypokinetic and ataxic dysarthria are common in movement disorders and represent the underlying neuropathology. We developed an artificial intelligence (Al) model to distinguish ataxic dysarthria and hypokinetic dysarthria from normal speech and differentiate ataxic and hypokinetic speech in parkinsonian diseases and cerebellar ataxia. We screened 804 perceptual speech analyses performed in the Samsung Medical Center Neurology Department between January 2017 and December 2020. The data of patients diagnosed with parkinsonian disorders or cerebellar ataxia were included. Two speech tasks (numbering from 1 to 50 and reading nine sentences) were analyzed. We adopted convolutional neural networks and developed a patch-wise wave splitting and integrating Al system for audio classification (PWSI-Al-AC) to differentiate between ataxic and hypokinetic speech. Of the 395 speech recordings for the reading task, 76, 112, and 207 were from normal, ataxic dysarthria, and hypokinetic dysarthria subjects, respectively. Of the 409 recordings of the numbering task, 82, 111, and 216 were from normal, ataxic dysarthria, and hypokinetic dysarthria subjects, respectively. The reading and numbering task recordings were classified with 5-fold cross-validation using PWSI-Al-AC as follows: hypokinetic dysarthria vs. others (area under the curve: 0.92 +/- 0.01 and 0.92 +/- 0.02), ataxia vs. others (0.93 +/- 0.04 and 0.89 +/- 0.02), hypokinetic dysarthria vs. ataxia (0.96 +/- 0.02 and 0.95 +/- 0.01), hypokinetic dysarthria vs. none (0.86 +/- 0.03 and 0.87 +/- 0.05), and ataxia vs. none (0.87 +/- 0.07 and 0.87 +/- 0.09), respectively. PWSI-Al-AC showed reliable performance in differentiating ataxic and hypokinetic dysarthria and effectively augmented data to classify the types even with limited training samples. The proposed fully automatic Al system outperforms neurology residents. Our model can provide effective guidelines for screening related diseases and differential diagnosis of neurodegenerative diseases.
- Files in This Item:
- There are no files associated with this item.
- Appears in Collections:
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.