Publications

Detailed Information

Quantitative Analysis of CO2 Uptake and Mechanical Properties of Air Lime-Based Materials

Cited 24 time in Web of Science Cited 29 time in Scopus
Authors

Kang, Sung-Hoon; Kwon, Yang-Hee; Moon, Juhyuk

Issue Date
2019-08-01
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Energies, Vol.12 No.15, p. 2903
Abstract
In the cement industry, utilization of a sustainable binder that has a lower energy consumption and carbon dioxide (CO2) emission than Portland cement is becoming increasingly important. Air lime is a binder that hardens by absorbing CO2 from the atmosphere, and its raw material, hydrated lime, is manufactured at a lower temperature (around 900 degrees C) than cement (around 1450 degrees C). In this study, the amount and rate of CO2 uptake by air lime-based materials are quantitatively evaluated under ambient curing conditions of 20 degrees C, 60% relative humidity, and 0.04% CO2 concentration. In addition, the effects of the water-to-binder ratio (w/b) and silica fume addition on the material properties of the air lime mortar, such as strength, weight change, carbonation depth, and pore structure, are investigated. Unlike hydraulic materials, such as Portland cement, the air lime mortar did not set and harden under a sealed curing condition, however, once exposed to dry air, the mortar began to harden by absorbing CO2. During the first week, most of the internal water evaporated, thus, the mortar weight was greatly reduced. After that, however, both the weight and the compressive strength consistently increased for at least 180 days due to the carbonation reaction. Based on the 91-day properties, replacing 10% of hydrated lime with silica fume improved the compressive and flexural strengths by 27% and 13% respectively, whereas increasing the w/b from 0.4 to 0.6 decreased both strengths by 29% due to the increased volume of the capillary pores. The addition of silica fume and the change in the w/b had no significant impact on the amount of CO2 uptake, but these two factors were effective in accelerating the CO2 uptake rate before 28 days. Lastly, the air lime-based material was evaluated to be capable of recovering half of the emitted CO2 during the manufacture of hydrated lime within 3 months.
ISSN
1996-1073
URI
https://hdl.handle.net/10371/220084
DOI
https://doi.org/10.3390/en12152903
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Civil & Environmental Engineering
Research Area Concrete, Mineral Carbonation, Non-captured carbon dioxide storage, 광물탄산화, 비포집 기반 이산화탄소 저장, 콘크리트

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share