Browse

Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors

DC Field Value Language
dc.contributor.authorXie, Jun-
dc.contributor.authorIhara, Maki-
dc.contributor.authorJung, Youngmee-
dc.contributor.authorKwon, Il Keun-
dc.contributor.authorKim, Soo Hyun-
dc.contributor.authorKim, Young Ha-
dc.contributor.authorMatsuda, Takehisa-
dc.date.accessioned2009-12-30T06:30:52Z-
dc.date.available2009-12-30T06:30:52Z-
dc.date.issued2006-
dc.identifier.citationTissue Eng. 12, 449, 2006en
dc.identifier.issn1076-3279 (Print)-
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16579678-
dc.identifier.urihttps://hdl.handle.net/10371/23616-
dc.description.abstractAn essential component of functional articular cartilage tissue engineering is a mechano-active scaffold, which responds to applied compression stress and causes little permanent deformation. As the first paper of a series on mechano-active scaffold-based cartilage tissue engineering, this study focused on mechanical responses to various modes of loading of compression forces and subsequent selection of mechano-active scaffolds from the biomechanical viewpoint. Scaffolds made of elastomeric microporous poly(L-lactide-co-epsilon-caprolactone) (PLCL) with open-cell structured pores (300 approximately 500 microm) and with different porosities ranging from 71 to 86% were used. The PLCL sponges and rabbit articular cartilage tissue were subjected to compression/unloading tests (0.1 and 0.005 Hz) at 5 kPa, and stress relaxation tests at 10, 30, and 50% strain. The measurements of the maximum strain under loading and residual strain under unloading for compression tests and the maximum stress and equilibrium stress in the stress relaxation test showed that the lower the porosity, the closer the mechanical properties are to those of native cartilage tissue. Among the PLCL sponges, the sponge with 71% porosity appears to be a suitable cartilage scaffold.en
dc.language.isoenen
dc.publisherMary Ann Lieberten
dc.subjectAnimalsen
dc.subject*Biocompatible Materialsen
dc.subjectBiomechanicsen
dc.subjectCartilage, Articular/*physiology/*surgeryen
dc.subjectCompressive Strengthen
dc.subjectMaterials Testingen
dc.subjectMicroscopy, Electron, Scanningen
dc.subject*Polyestersen
dc.subjectRabbitsen
dc.subjectStress, Mechanicalen
dc.subjectTissue Engineering/*methodsen
dc.titleMechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviorsen
dc.typeArticleen
dc.contributor.AlternativeAuthor정영미-
dc.contributor.AlternativeAuthor권일근-
dc.contributor.AlternativeAuthor김수현-
dc.contributor.AlternativeAuthor김영하-
dc.identifier.doi10.1089/ten.2006.12.449-
Appears in Collections:
College of Medicine/School of Medicine (의과대학/대학원)Biomedical Engineering (의공학전공)Journal Papers (저널논문_의공학전공)
Files in This Item:
There are no files associated with this item.
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse