Browse
Classification of Benign/Malignant PNGGOs using K-means algorithm in MDCT Images: A Preliminary Study
- Authors
- Son, Wooram; Park, Sang Joon; Park, Chang Min; Goo, Jin Mo; Kim, Jong Hyo
- Issue Date
- 2009-01-19
- Citation
- IEICE Tech. Rep., vol.108, no.385, MI2008-115, pp.257-260, Jan. 2009.
- Keywords
- Computer-aided diagnosis; Classification; lung cancer; ct
- Abstract
- Lung cancer is one of the most prevalent diseases in the world. Recently, PNGGOs (Pure nodular ground-glass opacity) have been reported to increasing aspect for all CT-detected pulmonary nodules. Moreover, the malignancy rate of PNGGOs is a considerable proportion of benign diseases. In this study, we have developed a computerized classification scheme of PNGGOs malignancy. Segmentation of PNGGOs was performed semi-automatically. After that, the histogram based statistical features and region based features of benign and malignant GGO was extracted. Finally, K-means classifier was applied. Experiment was performed employing 12 CT image sets and 91.67% of accuracy was achieved.
- ISSN
- 0913-5685
- Language
- English
- Files in This Item:
- Appears in Collections:
- Student's Archives (학생저작물)Student's WorksGraduated, Researcher (석·박사, 연구생)
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.