Browse

Quantitative GFP fluorescence as an indicator of arsenite developmental toxicity in mosaic heat shock protein 70 transgenic zebrafish

Cited 22 time in Web of Science Cited 21 time in Scopus
Authors
Seok, Seung-Hyeok; Baek, Min-Won; Lee, Hui-Young; Kim, Dong-Jae; Na, Yi-Rang; Noh, Kyoung-Jin; Park, Sung-Hoon; Lee, Hyun-Kyoung; Lee, Byoung-Hee; Ryu, Doug Young; Park, Jae Hak
Issue Date
2007-08-02
Publisher
Elsevier
Citation
Toxicol. Appl. Pharmacol. 225, 154-161
Keywords
FluorescenceGFPHeat shock response elementArseniteDevelopmental toxicityZebrafish (Danio rerio)
Abstract
In transgenic zebrafish (Danio rerio), green fluorescent protein (GFP) is a promising marker for environmental pollutants. In using GFP, one of the obstacles which we faced was how to compare toxicity among different toxicants or among a specific toxicant in different model species with the intensity of GFP expression. Using a fluorescence detection method, we first validated our method for estimating the amount of GFP fluorescence present in transgenic fish, which we used as an indicator of developmental toxicity caused by the well-known toxicant, arsenite. To this end, we developed mosaic transgenic zebrafish with the human heat shock response element (HSE) fused to the enhanced GFP (EGFP) reporter gene to indicate exposure to arsenite. We confirmed that EGFP expression sites correlate with gross morphological disruption caused by arsenite exposure. Arsenite (300.0 μM) caused stronger EGFP fluorescence intensity and quantity than 50.0 μM and 10.0 μM arsenite in our transgenic zebrafish. Furthermore, arsenite-induced apoptosis was demonstrated by TUNEL assay. Apoptosis was inhibited by the antioxidant, N-acetyl-cystein (NAC) in this transgenic zebrafish. The distribution of TUNEL-positive cells in embryonic tissues was correlated with the sites of arsenite toxicity and EGFP expression. The EGFP values quantified using the standard curve equation from the known GFP quantity were consistent with the arsenite-induced EGFP expression pattern and arsenite concentration, indicating that this technique can be a reliable and applicable measurement. In conclusion, we propose that fluorescence-based EGFP quantification in transgenic fish containing the hsp70 promoter–EGFP reporter-gene construct is a useful indicator of development toxicity caused by arsenite.
ISSN
0041-008X
Language
English
URI
http://hdl.handle.net/10371/7465
DOI
https://doi.org/10.1016/j.taap.2007.07.011
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Veterinary Medicine (수의과대학)Dept. of Veterinary Medicine (수의학과)Journal Papers (저널논문_수의학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse