Publications

Detailed Information

Vibrational energy flow analysis of penetration beam-plate coupled structures

DC Field Value Language
dc.contributor.authorSong, J. -H.-
dc.contributor.authorHong, S. -Y.-
dc.contributor.authorKil, H. -G.-
dc.contributor.authorKang, Y.-
dc.date.accessioned2011-12-08T01:38:33Z-
dc.date.available2011-12-08T01:38:33Z-
dc.date.issued2011-03-01-
dc.identifier.citationJOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY; Vol.25 3; 567-576-
dc.identifier.issn1738-494X-
dc.identifier.urihttps://hdl.handle.net/10371/75080-
dc.description.abstractThis study concern; the transmission of vibrational energy through beam-plate junctions by energy flow analysis, which is an analytic tool for predicting the frequency averaged vibration response of built-up structures in the medium to high frequency ranges. A semiinfinite beam perpendicularly connected to an infinite plate is studied using the wave transmission approach. To calculate the power transmission and the..-eflection coefficients of the beam-plate junction, compatibility and equilibrium conditions are applied when each wave component is incident on the beam and plate, respectively. Power coefficients are calculated and plotted against frequencies for different dimensions and the directivity pattern of the scattered waves in the plate show close agreement with that of the rigid inclusion as the frequency increases. The results obtained are applied to the finite beam and the circular plate coupled structure, and the energy densities obtained from energy flow analysis show better agreement with analytic solution results as frequencies are increased.-
dc.language.isoen-
dc.publisherKOREAN SOC MECHANICAL ENGINEERS-
dc.subjectEnergy flow analysis-
dc.subjectPower transmission coefficient-
dc.subjectPower reflection coefficient-
dc.subjectWave transmission approach-
dc.titleVibrational energy flow analysis of penetration beam-plate coupled structures-
dc.typeArticle-
dc.identifier.doi10.1007/s12206-011-0101-0-
dc.citation.journaltitleJOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY-
dc.description.citedreferenceSong JH, 2007, SHOCK VIB, V14, P15-
dc.description.citedreferencePark YH, 2006, SHOCK VIB, V13, P137-
dc.description.citedreferencePark YH, 2006, SHOCK VIB, V13, P167-
dc.description.citedreferencePark DH, 2003, SHOCK VIB, V10, P97-
dc.description.citedreferencePark DH, 2001, J SOUND VIB, V244, P651, DOI 10.1006/jsvi.2000.3517-
dc.description.citedreferenceTSO YK, 1995, J SOUND VIB, V186, P447-
dc.description.citedreferenceNORRIS AN, 1995, J SOUND VIB, V181, P115-
dc.description.citedreferenceKIM HS, 1994, J SOUND VIB, V174, P493-
dc.description.citedreferenceLOVE AEH, 1927, TREATISE MATH THEORY-
dc.description.citedreferenceTIMOSHENKO S, 1940, THEORY PLATES SHELLS, P25201-
dc.description.citedreferenceMCLACHLAN NW, 1954, BESSEL FUNCTION ENG-
dc.description.citedreferenceLYON RH, 1975, STAT ENERGY ANAL DYN-
dc.description.citedreferenceBELOV VD, 1977, SOV PHYS ACOUST+, V23, P115-
dc.description.citedreferenceCRAVEN PG, 1981, J SOUND VIB, V77, P417-
dc.description.citedreferenceCREMER L, 1988, STRUCTURE BORN SOUND-
dc.description.citedreferenceWILLIAM W, 1990, VIBRATION PROBLEMS E-
dc.description.citedreferenceCHO PE, 1993, THESIS PURDUE U-
dc.description.citedreferenceBOUTHIER OM, 1992, AIAA J, V30, P616-
dc.description.citedreferenceWOHLEVER JC, 1992, J SOUND VIB, V153, P1-
dc.description.citedreferenceLANGLEY RS, 1990, J SOUND VIB, V143, P241-
dc.description.tc0-
dc.identifier.wosid000288474200002-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share